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The ziggurat is an efficient method to generate normal random samples. It is shown that the

standard Ziggurat fails a commonly used test. An improved version that passes the test is intro-

duced. Flexibility is enhanced by using a plug-in uniform random number generator. An efficient

double-precision version of the ziggurat algorithm is developed that has a very high period.
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1. INTRODUCTION

Because the normal distribution is so fundamental in statistical applications, it is

essential to have an efficient and reliable method to generate random numbers from

it. Recently, Marsaglia and Tsang [2000b] refined their ziggurat method [Marsaglia

and Tsang 1984] to draw from the standard normal distribution. Their refinement

simplifies the method, and they show it to be faster than several other efficient

methods, so that it may claim to be the current method of choice.

There is something magical about the ziggurat method: it only uses one random

number to select a point for the rejection method, while normally two are required

to generate an (x, y) coordinate pair. This turns out to be the Achilles heel of the

method, potentially affecting the quality of the generated random numbers.

The objective of this note is four-fold. First, to clarify the impact of using a

single random number for the accept-reject step. Next, to propose a fix for the

identified shortcoming, while maintaining most of the efficiency. Finally, to present

a double precision algorithm in such a way that it can be used with different uniform

random number generators. Finally, I present optimized and well-structured code,

and provide a comparison with some other fast methods.

2. THE ZIGGURAT METHOD

The ziggurat partitions the standard normal density in horizontal blocks of equal

area. The standardization can be omitted, using f(x) = exp(−x2/2). All blocks
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Fig. 1. Example of a three-way ziggurat partitioning of the standard normal density

are rectangular boxes, except the bottom one, which consists of a box joined with

the remainder of the density. This is illustrated in Figure 1, using three boxes,

labeled from bottom to top as B0, B1, B2. Equal areas of size V implies:

x2 [f(x3) − f(x2)] = x1 [f(x2) − f(x1)] = x1f(x1) +

∫
∞

x1

f(x)dx = V.

Note that, working backward along the X-axis, previous values of x can be easily

derived. For example, if x1 is known:

x2 = f−1 (f(x1) + V/x1) .

In general, when dividing in C blocks, the partitioning can be found by solving

the non-linear equation:

xC−1(r) [f(0) − f (xC−1(r))] − V (r) = 0, (1)

where r denotes the right-most x1, xC = 0, and:

V (r) = rf(r) +

∫
∞

r

f(x)dx.

The value of xC−1(r) can be found by subsitution from:

xi = f−1 (f(xi−1) + V (r)/xi−1) , i = 2, . . . , C − 1, x1 = r.

Denote the solution of (1) by R, then the complete partitioning has been found.

The rejection method for the ziggurat is quite straightforward:

(1) Draw a box at random with probability 1/C, say Bi.

(2) Draw a random number in the box as z = U0xi for i > 0 and z = U0V/f(x1)

for i = 0.

(3) If z < xi+1 accept z.

(4.1) If i = 0, accept a v from the tail using [Marsaglia 1964].
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(4.2) Else if i > 0 and U1 [f(xi) − f(xi+1)] < f(z) − f(xi+1) accept z.

(5) Return to step 1.

U0 and U1 denote Uniform(0, 1) random numbers. This method only draws positive

numbers. To draw from the entire distribution, replace U0 in step 2 by 2U0 − 1 to

give z a sign. Then steps 3 and 4.1 change to:

(3∗) If |z| < xi+1 accept z.

(4.1∗) If i = 0, draw v from the tail using [Marsaglia 1964], accept sign(z)v.

The efficiency of this rejection algorithm is 0.5 ∗ (2π)1/2/(V C). Using C = 3, as

in Figure 1, this is only about 80%. The benefit comes for higher values of C: for

C = 128 it climbs to 98.78% with average acceptance rate of 98.05% at step 3.

Marsaglia and Tsang [2000b] note that the comparison in step 3a involves xi−1/xi,

which can be precomputed. They implement the first three steps as follows:

(1∗∗) Draw a 32-bit random unsigned integer j, and let i be determined by the p

least significant bits, assuming C = 2p.

(2∗∗) Rewrite j as a signed integer k.

(3∗∗) Check if k is in the rectangle of box i: if |k| < 231xi+1/xi accept z (use

|k| < 231x1f(x1)/V for i = 0).

The right-hand side of the comparison in 3∗∗ can be stored as an integer, so that

the comparison can be done using integer arithmetic.

3. TESTING THE ZIGGURAT METHOD

Testing the normal RNG is perhaps more important than the underlying uniform,

because it provides the basis for most statistical simulation experiments. A simple

method is to transform the normal random numbers ei back to uniformity using the

normal cdf Φ: ũi = Φ(ei). The ũi can then be used in the available testing software,

in our case the crush and big crush test suite [L’Ecuyer and Simard 2005].1 The

crush suite has 94 tests in total, using about 235 random numbers, while the big

crush involves 60 tests, requiring close to 238 random numbers.

Table I provides the failure count on the crush test for three Ziggurat methods.

Two versions of the original RNOR [Marsaglia and Tsang 2000b]2, the original

using SHR3, and a modified version using MWC8222 instead of SHR3 to generate

the uniform random numbers. The next entry is the new ziggurat, ZIGNOR, using

1Of course, when inversion is used, this form of testing is redundant: ũi = Φ(Φ−1(ui)) = ui.
2Marsaglia and Tsang [2000a] also list the code for the algorithm, but it contains several syntax

errors. It is faster because the abs function is used instead of the floating point version fabs. The

version used here is the former, but using abs and changing float to double.
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MWC8222. All of these use C = 128. In addition, the test results for the polar

transformation are given, also based on MWC8222 for the uniform random numbers.

The last line in the table is for the uniform random number generator MWC8222,

which is a multiply-with-carry generator working on an array of 256 integers with

a period of 28222, see [Marsaglia 2003].

The crush results in Table I shows that the original ziggurat method, RNOR,

always fails one test comprehensively. Indeed, this even happens when using

MWC8222, which performs very well as a uniform RNG.

Table I. Number of failures in the crush (94 tests in total) and big crush batteries of tests for

some ziggurat normal RNGs as well as MWC8222 polar, and MWC8222 uniform RNG.

Crush Big Crush

normal uniform 10−300 10−15 10−5 10−300 10−15 10−5

RNOR: old ziggurat SHR3 1 0 0 3 1 1

RNOR: old ziggurat MWC8222 1 0 0 1 0 0

ZIGNOR: new version MWC8222 0 0 0 0 0 0

polar MWC8222 0 0 0 0 0 0

— MWC8222 0 0 0 0 0 0

The test that is failed is the collision test [Knuth 1998]: n balls are thrown

randomly in m urns. With m > n, less than one ball per urn is expected, and the

test counts the number of collisions. The crush version uses n = 107 and m = 230,

amounting to a test for 30 dimensional randomness. The original code provided

for RNOR [Marsaglia and Tsang 2000b; 2000a] uses floats (32-bit floating-point

values) throughout, and it is likely that no method using floats will pass the test.

The versions of RNOR tested here use doubles (64-bit floating-point values), and

still fail the test.

The cause of this failure is more fundamental: the least significant 7 bits are used

in step 1∗∗ to determine the box Bi, but these also form part in step 2∗∗ of the k

that is used. So the x and y coordinate of the accept-reject point are not entirely

independent. When using floats this overlap will be only in a few bits, but when

using doubles it is all the p least significant bits. As an extreme example, consider

decimal arithmetic with two significant digits and ten boxes: then all numbers

0.01, 0.11, . . . , 0.91 fall in box one, 0.02, . . . , 0.92 in box two, etc. In principle, the

random integer can be split in two components, but that would leave only 25 bits

for the uniform random number (ignoring the loss of one bit for the sign): not much

more than 30 million normal random numbers in total. This takes only a couple of

seconds to generate (in contrast, the timings below use 109 random numbers).

The additional failures of RNOR-SHR3 in the big crush test are due to deficiencies

in the SHR3 RNG. When it is replaced by MWC8222 only the collision test reports
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a failure.3

4. IMPLEMENTATION

Two new versions of the ziggurat method are created. The first, labelled ZIGNOR,

is a straightforward implementation. Correcting the test failure requires the use of

two random numbers: a uniform transformed to U(−1, 1) and an integer of which

the lowest 7 bits are used. Because steps 4.1 and 4.2 are only executed 2% of the

time, there is no need to do these very efficiently. So it is unneccesary to precompute

f(xi) in order save computation of one exp function. Moreover, the method is

made portable by removing the built-in SHR3 random number generator. Instead,

calls are made through a function pointer, which allows any uniform generator

to be plugged in. This is, of course, slower than using inline code as in RNOR.

As discussed above, ZIGNOR uses MWC8222 with a period of 28222. MWC8222

uses a 64-bit integer for its calculations, and is particularly well-suited for modern

hardware.

The second version, VIZIGNOR, is a highly optimized version. It calls the under-

lying uniform in three ways: to get a 32-bit integer, to get a vector of 32-bit integers,

and to get a uniform(0, 1) number. Following Marsaglia and Tsang [2000b], scaling

is used to allow the main test of step 3 to be done using integer arithmetic. An

additional optimization is that only 1 and a quarter random integers are needed

to perform the main test. Finally, these inputs are generated in vectors of 256

elements.

The new ziggurat algorithms ZIGNOR and VIZIGNOR are compared with two

other fast methods. The first is VNAL, based on the alias method [Ahrens and

Dieter 1988]. This has a similar problem with the collision test in its original form,

but VNAL avoids this. The underlying uniform is again MWC8222, and inputs are

generated in vectors of 256, as for VIZIGNOR. However, VNAL seems to benefit

much less of this. The second is FN3(q) [Wallace 1996]4, which generates normal

variates directly. The q parameter is for quality control, and is set to two and three

here. FN3(2) and FN3(3) pass the crush test.

To make timing comparisons more robust, I consider a range of computer plat-

forms and compilers, as documented in Table II.

Table III compares the CPU time that is required to generate and sum 109 ran-

dom numbers. The first line is the MWCC8222 uniform generator, the remainder

are standard normals. It shows that VIZIGNOR, the new fast ziggurat is signifi-

cantly faster than the alias-based method VNAL. RNOR-MWC8222 is RNOR with

3Leong et al. [2005] also report a deficiency in the original RNOR-SHR3 caused by the use of

SHR3. They replace SHR3 by KISS.
4Using FastNorm3.c, see ftp.cs.monash.edu.au/pub/csw.
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Table II. Computer platforms and compilers used to time random number generators

Label Hardware Operating system

A AMD Athlon 64 3400 (2.4Ghz, Socket 754) Linux Fedora Core 3 64-bit

I Intel Pentium 4 (2.8GHz, 800FSB) Microsoft Windows XP SP2

Label Compiler Settings

1 Microsoft Visual C++ 6 SP6 /O2

2 GCC 3.4.2 -O2 -m32 (32-bit executable)

3 GCC 3.4.2 -O2 -m64 (64-bit executable)

inline calls to MWC8222. This is faster still, but fails the collision test. FN3(2) is

competitive with VIZIGNOR on some platforms, but this algorithm is much less

understood than a rejection method that transforms uniforms to normals.

To put the computational speed in perspective, Table III also gives timings for a

straightforward implementation of the polar method. VIZIGNOR is between three

and four times faster.5

Table III. Speed comparison: seconds of CPU time to generate and sum 109

standard normal random numbers (MWC8222: U(0, 1) uniform)

I-1 I-2 A-2 A-3

Using MWC8222

MWC8222 uniform 17.7 14.6 9.8 8.1

VIZIGNOR 33.6 40.0 21.6 17.2

ZIGNOR 49.2 52.0 32.8 26.8

VNAL 54.3 64.7 39.6 36.7

RNOR-MWC8222 23.5 25.1 16.6 12.7

Polar 85.7 177.8 83.7 79.6

Other

FN3(2) 43.6 35.3 15.3 15.0

FN3(3) 57.4 43.4 19.7 19.7

The precise form of the ziggurat will depend on the context. For example, as

argued elsewhere [Doornik 2005], it would be desirable to return 52 bits of preci-

sion instead of 32. ZIGNOR is easily adapted by using an appropriate underlying

higher precision uniform RNG (but a more efficient implementation would use two

integers, using 7 bits for the box, leaving enough for the higher precision uniform).

Alternatively, when vectors of random numbers are required, the implementation

5The results of Doornik [2005] are relevant here: often uniform RNGs are unnecessarily penal-

ized by up to 50% through inefficient conversion to floating point. That is avoided here. As a

first consequence, the uniform MWC8222 always clearly outperforms any standard normal RNG.

Secondly, the gap between the polar method and the fast ziggurat method is somewhat smaller:

the fast ziggurat returns a signed number, and avoids the speed penalty which occurs twice in the

simple polar method. These two artefacts are usually present in other published benchmarks.



Improved Ziggurat Method · 7

will be closer to VIZIGNOR. This is more difficult to extend to 52-bit precision,

though. The resulting performance should be expected to lie somewhere between

ZIGNOR and VIZIGNOR.

5. CONCLUSION

An improved ziggurat to generate standard normal random numbers was created.

It is portable, allowing the use of very-high period random number generators, and

passes the collision test. The ziggurat is an elegant method that can be easily

understood and implemented. VIZIGNOR is probably the fastest general purpose

normal RNG, and the generator of choice when only 32-bit precision is required.

Indeed, the ziggurat method is increasingly finding its way into commonly used

software, so it is important that the improved version is used instead of the original.

ZIGNOR is less efficient, but still between two and three times faster than the

polar method. It could be preferred when more flexibility is required. The code for

ZIGNOR is listed in the Appendix; the complete source code can be downloaded

from www.doornik.com/research. The original RNOR should only be considered if

speed is much more important than quality and high periodicity.

These results may also impact on the generation of Gamma variables from a

normal and uniform [Marsaglia and Tsang 2000a]: the corrected ziggurat should

be used to avoid carrying over deficiencies to the gamma. Because the speed gap

between uniform and normal has grown to twofold (the improved ziggurat is some-

what slower, and the uniform has been made faster [Doornik 2005]), it remains to

be seen which gamma method is faster.

APPENDIX

A.1 ZIGNOR

DRanU() returns a uniform random number, U(0, 1), and IRanU() returns 32-bit

unsigned random integer. DRanNormalTail is implemented as a separate function:

it gets called only rarely, so that efficiency does not matter. For the same reason, it

is not necessary to avoid a call to exp() when checking for the wedges (this could

be achieved by precomputing the function values f(xi).

static double DRanNormalTail(double dMin, int iNegative)

{

double x, y;

do

{ x = log(DRanU()) / dMin;

y = log(DRanU());

} while (-2 * y < x * x);

return iNegative ? x - dMin : dMin - x;

}
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#define ZIGNOR_C 128 /* number of blocks */

#define ZIGNOR_R 3.442619855899 /* start of the right tail */

/* (R * phi(R) + Pr(X>=R)) * sqrt(2\pi) */

#define ZIGNOR_V 9.91256303526217e-3

/* s_adZigX holds coordinates, such that each rectangle has*/

/* same area; s_adZigR holds s_adZigX[i + 1] / s_adZigX[i] */

static double s_adZigX[ZIGNOR_C + 1], s_adZigR[ZIGNOR_C];

static void zigNorInit(int iC, double dR, double dV)

{

int i; double f;

f = exp(-0.5 * dR * dR);

s_adZigX[0] = dV / f; /* [0] is bottom block: V / f(R) */

s_adZigX[1] = dR;

s_adZigX[iC] = 0;

for (i = 2; i < iC; ++i)

{

s_adZigX[i] = sqrt(-2 * log(dV / s_adZigX[i - 1] + f));

f = exp(-0.5 * s_adZigX[i] * s_adZigX[i]);

}

for (i = 0; i < iC; ++i)

s_adZigR[i] = s_adZigX[i + 1] / s_adZigX[i];

}

double DRanNormalZig(void)

{

unsigned int i;

double x, u, f0, f1;

for (;;)

{

u = 2 * DRanU() - 1;

i = IRanU() & 0x7F;

/* first try the rectangular boxes */

if (fabs(u) < s_adZigR[i])

return u * s_adZigX[i];

/* bottom box: sample from the tail */

if (i == 0)

return DRanNormalTail(ZIGNOR_R, u < 0);

/* is this a sample from the wedges? */

x = u * s_adZigX[i];

f0 = exp(-0.5 * (s_adZigX[i] * s_adZigX[i] - x * x) );

f1 = exp(-0.5 * (s_adZigX[i+1] * s_adZigX[i+1] - x * x) );
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if (f1 + DRanU() * (f0 - f1) < 1.0)

return x;

}

}

A.2 VIZIGNOR

The efficient version relies on the fact that IRanU() returns an unsigned 32-bit

integer, while RanVecIntU fills a vector with unsigned 32-bit integers. Taking into

account that the final result will be signed, xi is now stored as xi2
−31 and the ratio

as 2−31xi+1/xi. A candidate is drawn as a 32-bit unsigned integer, cast to a signed

integer. This should be scaled by 2−31 to obtain a uniform between −1 and 1. The

code draws random integers and boxes in chunks of 256, refilling when empty.
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