COVID-19 short-term forecasts Deaths 2020-11-12


General information

  • Forecasts produced by Jennie Castle, Jurgen Doornik, and David Hendry, researchers at the University of Oxford. These are our forecasts, and should not be considered official forecasts from, or endorsed by, any of: University of Oxford, Oxford Martin School, Nuffield College, or Magdalen College.
  • These forecasts are short term time-series extrapolations of the data. They are not based on epidemiological modelling or simulations. All forecasts are uncertain: their success can only be determined afterwards. Many mitigation strategies are in place, which, if successful, invalidate our forecasts. An explanation of our methods is provided below.
  • A list of notes is below. The most recent note:
    [2020-10-11]Short-term forecasting of the coronavirus pandemic (with Jennie Castle and David Hendry) is now in press at the International Journal of Forecasting.

Peak increase in estimated trend of Deaths in Europe 2020-11-12

UKEUATBEBGBSCZDEDKESFIFRGRHRHUIEITNLPLPTROSESISKNOCH
Peak date (mm-dd)04-1006-19 --11-04 -- -- -- --11-0311-0404-2109-18 -- -- --10-2608-1511-04 -- -- --09-01 -- --08-14 --
Peak daily increment 964 805 210 3 1073 30 61 5 127 87 4 3
Days since peak 216 146 8 9 8 205 55 17 89 8 72 90
Last total 50928 206565 1608 13891 1970 531 5755 12216 755 40461 365 42215 959 925 2784 1965 43589 8304 9080 3181 8510 6122 686 464 291 3216
Last daily increment 563 2538 44 133 72 22 185 222 2 356 0 0 50 32 87 0 636 89 275 78 121 40 41 50 6 103
Last week 2453 16362 268 1183 394 86 1271 976 17 1628 3 2658 244 208 534 25 2951 417 1793 389 847 100 189 147 6 506
Previous peak date --04-0404-0704-12 -- --04-0804-1604-0403-31 --04-08 -- --04-2304-2403-2904-0404-2604-1405-0204-12 -- --04-0704-04
Previous peak daily increment 3076 22 321 10 233 15 946 943 14 167 781 153 23 29 25 98 8 66
Low between peaks -892 -106 0 -1351 7 0 6 -6 -5 0

Peak increase in estimated trend of Deaths 2020-11-12

AustraliaBrazilCanadaChileColombiaIndiaIndonesiaIranMexicoPeruPhilippinesRussiaSouth AfricaTurkeyUSUS-ALUS-ARUS-AZUS-CAUS-COUS-CTUS-DCUS-DEUS-FLUS-GAUS-HIUS-IAUS-IDUS-ILUS-INUS-KSUS-KYUS-LAUS-MAUS-MDUS-MIUS-MNUS-MOUS-MSUS-MTUS-NCUS-NDUS-NEUS-NHUS-NJUS-NMUS-NVUS-NYUS-OHUS-OKUS-ORUS-PAUS-SCUS-SDUS-TNUS-TXUS-UTUS-VAUS-WAUS-WIUS-WV
Peak date (mm-dd)09-0307-2110-0207-1708-2309-1209-22 --10-0507-2309-14 --07-2209-2408-0409-1609-1511-0408-0610-1307-1309-0910-3008-0708-2210-21 --09-0911-0608-1510-1210-2808-0908-2004-2909-09 -- --08-2611-0711-03 --05-2005-2906-25 --08-1309-2108-2911-03 --05-0507-28 -- --07-27 --09-1508-0610-25 --
Peak daily increment 35 1065 78 785 318 1159 119 1724 2947 159 323 69 1079 99 124 22 138 23 9 1 8 175 66 6 19 309 12 14 12 36 106 56 38 31 11 34 40 25 1566 18 40 92 14 137 45 386 72 13 40
Days since peak 70 114 41 118 81 61 51 38 112 59 113 49 100 57 58 8 98 30 122 64 13 97 82 22 64 6 89 31 15 95 84 197 64 78 5 9 176 167 140 91 52 75 9 191 107 108 58 98 18
Last total 907 164281 10828 14699 33491 128668 14933 40121 97056 35031 7721 31755 20076 11233 242423 3213 2144 6240 18135 2468 4726 657 732 17372 8200 221 1946 749 10846 4563 1157 1622 5863 10234 4244 8100 2793 3110 3514 472 4706 697 755 495 16495 1176 1880 33843 5658 1481 746 9182 4084 567 3735 19474 542 3758 2504 2621 555
Last daily increment 0 913 80 66 179 547 97 457 626 39 11 429 65 88 919 12 18 12 27 25 10 0 8 72 68 0 19 16 48 51 9 18 34 20 15 48 39 22 17 0 8 11 31 3 19 18 3 15 35 11 4 46 8 0 26 5 6 17 25 0 2
Last week 0 2266 335 249 1086 3106 491 2712 2733 301 260 2101 327 511 5870 164 88 131 204 92 55 5 16 358 241 3 118 70 449 257 64 78 76 136 65 304 202 196 95 53 124 84 56 7 79 88 35 109 164 52 30 218 79 57 240 428 31 76 68 93 66
Previous peak date -- --05-06 -- --06-16 --03-21 -- --07-12 -- --04-1504-13 -- --07-21 --04-2404-2004-2906-23 --04-07 --05-21 --05-1205-02 --04-1404-1404-25 --04-1405-2805-05 -- -- -- -- -- --04-2205-1304-1205-1804-2904-17 -- --04-29 -- -- --07-3004-2204-0604-06 --
Previous peak daily increment 168 1662 144 92 125 2225 78 72 105 11 46 44 15 112 99 10 64 459 137 25 18 317 10 10 3573 76 8 24 5 104 25 13
Low between peaks 4 388 20 16 531 4 2 3 1 -3 12 15 5 4 12 -1 6 52 3 6 15 1 6 9 -17 3

Deaths count forecast Europe (bold red line in graphs) 2020-11-13 to 2020-11-19

DateUKEUATBEBGBSCZDEESFRGRHRHUIEITNLPLPTROSESISKCH
2020-11-12 50928 206565 1608 13891 1970 531 5755 12216 40461 42215 959 925 2784 1965 43589 8304 9080 3181 8510 6122 686 464 3216
2020-11-13 51370 206600 1658 14010 2079 545 5917 12520 40760 42410 1005 960 2831 1971 44130 8479 9430 3253 8510 6153 747 485 3357
2020-11-14 51980 207000 1708 14200 2185 559 6115 12710 40800 42570 1066 994 2909 1975 44640 8583 9760 3323 8572 6181 807 531 3394
2020-11-15 52390 207100 1759 14340 2294 567 6301 12880 40830 42760 1123 1029 2967 1979 45150 8663 9970 3395 8600 6208 873 535 3425
2020-11-16 52720 208000 1811 14490 2405 585 6493 13070 41280 42900 1180 1064 3000 1983 45640 8747 10130 3466 8658 6234 941 548 3518
2020-11-17 53400 209200 1864 14780 2520 603 6749 13350 41310 43050 1243 1099 3083 1987 46140 8893 10450 3539 8744 6260 1015 581 3593
2020-11-18 54090 211700 1918 14970 2641 616 6985 13600 41850 43190 1308 1135 3162 1991 46630 9008 10830 3614 8853 6286 1095 616 3651
2020-11-19 54530 214100 1974 15110 2768 636 7188 13770 42180 43330 1365 1172 3263 1995 47130 9079 11190 3690 8973 6312 1182 678 3776

Deaths count forecast (bold red line in graphs) 2020-11-13 to 2020-11-19

DateBrazilCanadaChileColombiaIndiaIndonesiaIranMexicoPeruPhilippinesRussiaSouth AfricaTurkeyUSUS-ALUS-ARUS-AZUS-CAUS-COUS-CTUS-FLUS-GAUS-IAUS-IDUS-ILUS-INUS-KSUS-KYUS-LAUS-MAUS-MDUS-MIUS-MNUS-MOUS-MSUS-MTUS-NCUS-NDUS-NEUS-NJUS-NMUS-NVUS-NYUS-OHUS-OKUS-ORUS-PAUS-SCUS-SDUS-TNUS-TXUS-UTUS-VAUS-WAUS-WIUS-WV
2020-11-12 164281 10828 14699 33491 128668 14933 40121 97056 35031 7721 31755 20076 11233 242423 3213 2144 6240 18135 2468 4726 17372 8200 1946 749 10846 4563 1157 1622 5863 10234 4244 8100 2793 3110 3514 472 4706 697 755 16495 1176 1880 33843 5658 1481 746 9182 4084 567 3735 19474 542 3758 2504 2621 555
2020-11-13 164800 10890 14740 33670 129200 15020 40500 97500 35100 7763 32120 20140 11320 242800 3213 2161 6242 18220 2468 4734 17410 8200 1962 749 10850 4568 1172 1631 5874 10250 4253 8136 2834 3129 3517 489 4770 710 771 16500 1195 1890 33870 5660 1507 752 9182 4111 601 3770 19600 550 3769 2509 2628 559
2020-11-14 165100 10940 14790 33840 129700 15110 40930 98000 35160 7805 32480 20190 11400 243600 3237 2178 6277 18240 2473 4741 17470 8235 1978 755 10880 4610 1176 1644 5875 10270 4261 8170 2876 3154 3529 509 4795 722 777 16510 1211 1894 33890 5676 1510 763 9200 4125 614 3805 19680 555 3779 2509 2636 564
2020-11-15 165200 11000 14830 34020 130200 15190 41380 98200 35230 7847 32830 20250 11470 243800 3237 2195 6291 18250 2473 4748 17490 8240 1994 757 10880 4641 1176 1647 5890 10290 4270 8204 2918 3182 3538 518 4795 735 782 16510 1228 1897 33910 5686 1517 764 9200 4136 627 3842 19700 557 3789 2509 2643 569
2020-11-16 165400 11050 14880 34190 130700 15280 41830 98400 35280 7889 33180 20300 11550 244200 3237 2212 6292 18280 2473 4755 17530 8266 2009 765 10880 4668 1196 1655 5902 10310 4278 8236 2942 3209 3539 521 4802 747 790 16520 1244 1898 33930 5699 1523 767 9200 4142 628 3877 19710 557 3799 2529 2650 574
2020-11-17 165600 11100 14910 34360 131200 15360 42270 99000 35340 7931 33530 20360 11630 245100 3251 2229 6315 18330 2477 4762 17590 8298 2025 777 10900 4720 1211 1669 5913 10330 4286 8268 2973 3236 3573 527 4848 759 805 16540 1261 1908 33940 5719 1534 772 9209 4162 630 3912 19790 562 3809 2549 2658 579
2020-11-18 166100 11160 14920 34530 131700 15440 42730 99600 35400 7973 33890 20420 11710 246200 3289 2246 6348 18380 2487 4769 17640 8354 2041 797 10970 4749 1221 1682 5916 10350 4294 8301 3031 3264 3590 538 4886 772 810 16560 1278 1923 33960 5788 1551 776 9231 4176 652 3948 19900 566 3819 2554 2665 584
2020-11-19 166700 11210 15000 34700 132200 15530 43150 100100 35460 8016 34250 20470 11790 247100 3306 2264 6362 18410 2509 4776 17700 8408 2057 810 11030 4793 1229 1701 5943 10370 4302 8333 3063 3291 3601 539 4905 784 818 16570 1295 1927 33980 5818 1565 780 9276 4185 661 3984 19930 572 3830 2572 2673 589

Deaths count average forecast Europe (bold black line in graphs) 2020-11-13 to 2020-11-19

DateUKEUATBEBGBSCZDEESFRGRHRHUIEITNLPLPTROSESISKCH
2020-11-12 50928 206565 1608 13891 1970 531 5755 12216 40461 42215 959 925 2784 1965 43589 8304 9080 3181 8510 6122 686 464 3216
2020-11-13 51420 209300 1666 14150 2040 545 5981 12420 40850 42670 997 961 2886 1969 44160 8411 9450 3252 8637 6150 726 496 3331
2020-11-14 51820 211800 1714 14370 2109 560 6194 12530 41070 43100 1037 1001 2989 1974 44610 8484 9800 3317 8765 6162 771 528 3407
2020-11-15 52130 213900 1762 14560 2166 568 6409 12620 41300 43530 1077 1043 3085 1978 45030 8534 10110 3381 8870 6174 816 545 3469
2020-11-16 52400 216500 1812 14750 2255 586 6634 12730 41650 43960 1118 1087 3173 1982 45450 8581 10400 3447 8984 6186 863 566 3588
2020-11-17 52840 219200 1863 15020 2323 603 6901 12880 41880 44390 1165 1131 3287 1986 45910 8690 10770 3515 9116 6200 917 594 3698
2020-11-18 53240 222800 1918 15230 2396 618 7153 13010 42210 44830 1210 1177 3403 1990 46360 8775 11140 3585 9264 6212 975 626 3810
2020-11-19 53550 225800 1978 15400 2477 636 7400 13110 42510 45270 1259 1227 3524 1994 46810 8843 11550 3656 9398 6223 1034 667 3957

Deaths count average forecast (bold black line in graphs) 2020-11-13 to 2020-11-19

DateBrazilCanadaChileColombiaIndiaIndonesiaIranMexicoPeruPhilippinesRussiaSouth AfricaTurkeyUSUS-ALUS-ARUS-AZUS-CAUS-COUS-CTUS-FLUS-GAUS-IAUS-IDUS-ILUS-INUS-KSUS-KYUS-LAUS-MAUS-MDUS-MIUS-MNUS-MOUS-MSUS-MTUS-NCUS-NDUS-NEUS-NJUS-NMUS-NVUS-NYUS-OHUS-OKUS-ORUS-PAUS-SCUS-SDUS-TNUS-TXUS-UTUS-VAUS-WAUS-WIUS-WV
2020-11-12 164281 10828 14699 33491 128668 14933 40121 97056 35031 7721 31755 20076 11233 242423 3213 2144 6240 18135 2468 4726 17372 8200 1946 749 10846 4563 1157 1622 5863 10234 4244 8100 2793 3110 3514 472 4706 697 755 16495 1176 1880 33843 5658 1481 746 9182 4084 567 3735 19474 542 3758 2504 2621 555
2020-11-13 165000 10890 14740 33670 129200 15010 40540 97700 35080 7754 32130 20140 11320 243300 3243 2160 6261 18190 2486 4735 17440 8246 1966 761 10930 4601 1168 1634 5879 10260 4256 8144 2836 3146 3530 482 4732 713 770 16510 1192 1895 33860 5691 1496 752 9225 4093 583 3781 19600 552 3770 2513 2636 562
2020-11-14 165300 10940 14790 33850 129700 15100 40890 98200 35130 7795 32460 20190 11400 244000 3267 2177 6288 18210 2499 4743 17500 8277 1981 769 11010 4642 1173 1646 5884 10280 4264 8178 2868 3180 3543 499 4758 728 775 16510 1206 1899 33880 5704 1501 761 9257 4107 597 3817 19690 558 3779 2513 2655 571
2020-11-15 165400 10990 14830 34020 130200 15170 41250 98400 35180 7836 32780 20250 11470 244300 3279 2195 6307 18210 2510 4751 17520 8291 1995 775 11060 4673 1176 1652 5897 10290 4272 8213 2900 3199 3551 507 4765 742 781 16510 1220 1903 33890 5710 1509 763 9273 4119 611 3848 19730 561 3787 2513 2674 579
2020-11-16 165700 11040 14870 34190 130700 15250 41610 98600 35220 7876 33100 20300 11550 244600 3289 2213 6318 18250 2521 4758 17560 8317 2014 784 11100 4703 1192 1661 5908 10310 4280 8247 2919 3219 3553 514 4776 757 787 16520 1234 1906 33910 5720 1516 767 9289 4128 621 3881 19770 562 3796 2525 2697 588
2020-11-17 166000 11090 14900 34360 131200 15330 41980 99100 35270 7918 33420 20360 11630 245300 3309 2231 6336 18290 2536 4766 17610 8343 2034 794 11170 4755 1204 1673 5919 10330 4288 8282 2939 3259 3583 524 4821 770 797 16520 1248 1916 33930 5734 1528 772 9323 4146 631 3916 19850 569 3804 2542 2721 597
2020-11-18 166400 11150 14930 34540 131700 15420 42320 99700 35320 7959 33770 20410 11710 246000 3330 2249 6355 18340 2549 4774 17650 8379 2052 807 11240 4779 1214 1684 5927 10350 4296 8316 2974 3282 3598 536 4860 786 802 16530 1262 1926 33940 5783 1545 777 9349 4164 646 3950 19970 573 3813 2547 2743 604
2020-11-19 166700 11200 14980 34710 132200 15500 42650 100100 35360 8001 34100 20460 11790 246600 3345 2268 6370 18370 2568 4782 17690 8415 2068 815 11320 4819 1223 1699 5943 10370 4304 8351 2997 3302 3606 544 4896 802 809 16540 1277 1933 33960 5803 1561 781 9389 4177 663 3984 20050 579 3821 2557 2764 612

Further information

  • We believe these forecasts fill a useful gap in the short run. They give an indication of what is likely to happen in the next few days, removing some aspect of surprise. Moreover, a noticeable drop in comparison to the extrapolations could be an indication that the implemented policies are having some impact. It is difficult to understand exponential growth. We hope that these forecasts may help to convince viewers to adhere to the policies implemented by their respective governments, and keep all arguments factual and measured.
  • We use the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering. This is updated daily, but we tend to update our forecasts only every other day.
    US state data as of 2020-03-28 is courtesy of the New York Times.
  • We can only provide forecasts of what is measured. If confirmed cases are an underestimate of actual cases, then our forecasts will also be underestimates. No other epidemiological data is used. Data definition and collection differs between countries and may change over time.
  • We will update the methodology as we learn what is happening in the next few days or weeks. Once the number of cases levels off, there is no need to provide these forecasts anymore.
  • Countries where the counts are very low or stable have been omitted.
  • The graphs have dates on the horizontal axis (yyyy-mm-dd) and cumulative counts on the vertical axis. They show
    1. bold dark grey line (with circles): observed counts (Johns Hopkins CSSE);
    2. many light grey lines (with open circles): forecasts using different model settings and starting up to four periods back;
    3. red line (with open circles): single forecasts path using default model settings;
    4. black line (with crosses): average of all forecasts, recentered on the last observation;
    5. thin green lines: some indication of uncertainty around the red forecasts, but we do not know how reliable that is.
    Both the red line forecasts and the black lines are also given in the tables above. These forecasts differ, we are currently inclined to use the average forecasts.
  • The forecasts are constructed as follows:
    1. An overall `trend' is extracted by taking a window of the data at a time. In each window we draw `straight lines' which are selected using an automatic econometric procedure (`machine learning'). All straight lines are collected and averaged, giving the trend.
    2. Forecasts are made using the estimated trend, but we note that this must be done carefully, because simply extrapolating the flexible insample trend would lead to wildly fluctuating forecast. We use the `Cardt' method, which has been found to work well in other settings.
    3. Residuals from the trend are also forecast, and combined with trend forecasts into an overall forecast.
  • Scenario forecasts are constructed very differently: smooth versions of the Chinese experience are matched at different lag lengths with the path of each country. This probably works best from the peak, or the slowdown just before (but we include it for the UK nonetheless).
  • The forecast evaluation shows past forecasts, together with the outcomes (in the grey line with circles).
  • EU-BS is Estonia, Latvia, and Lithuania together.
  • This paper describes the methodology and gives further references. Also available as Nuffield Economics Discussion Paper 2020-W06. Still preliminary is the documentation of the medium term forecasts.

Recent changes and notes

[2020-10-11]Short-term forecasting of the coronavirus pandemic (with Jennie Castle and David Hendry) is now in press at the International Journal of Forecasting.
[2020-10-10]Temporarily removed forecasts from the Chinese scenarios, while investigating possibility to use own history from the first wave.
Added information on the previous peak (if present) to the peak tables.
Local forecasts for England: now dropping last four observations.
[2020-07-01] Modified the short-term model to allow for (slowly changing) seasonality. Many countries show clear seasonality after the initial period, likely caused by institutional factors regarding data collection. This seasonality was also getting in the way of peak detection. As a consequence estimates of the peak date may have changed for countries with strong seasonality.
Added forecasts of cumulative confirmed cases for lower tier local authorities of England. The data is available from 2020-07-02 including all tests (pillar one and two). Only authorities with more than 5 cases in the previous week are included.
[2020-06-29] Tables in April included the world, but not the world as we know it (double counting China and the US). So removed the world from those old tables.
Why short-term forecasts can be better than models for predicting how pandemics evolve just appeared at The Conversation.
Thursday 2 July webinar at the FGV EESP - São Paolo School of Economics. This starts at 16:00 UK time (UTC+01:00) and streamed here.
[2020-06-24] Research presentation on short-term COVID-19 forecasting on 26 June (14:00 UK time) at the Quarterly Forecasting Forum of the IIF UK Chapter.
[2020-06-06] Removed Brazil from yesterday's forecasts (only; last observation 2020-06-05).
[2020-06-04] Data issues with confirmed cases for France.
Added an appendix to the short term paper with further forecast comparisons for European and Latin American countries.
Both Sweden and Iran have lost their peak in confirmed cases. For Sweden the previous peak was on 24 April (daily peak of 656 cases), for Iran it was on 31 March (peak of 3116). For Iran this looks like a second wave, with increasing daily counts for the last four weeks. For Sweden this is a sudden jump in confirmed cases in the last two days, compared to a fairly steady weekly pattern over the previous six weeks.
[2020-05-20] Problem with UK confirmed cases: negative daily count. This makes the forecasts temporarily unreliable.
Updated the second paper.
[2020-05-18] Minor fixes to the improved version of scenario forecasting, backported to 2020-05-13.
[2020-05-13] We now omit countries with fewer than 200 confirmed cases in the last week (25 for deaths).
The short-term paper has some small updates, including further comparisons with other models.
Data for Ecuador are not reliable enough for forecasting.
Switched to an improved version of scenario forecasting.
[2020-05-06] The New York Times is in the process of redefining its US state data. Unfortunately, at the moment only the last observation has changed (e.g New York deaths jumped from 19645 on 2020-05-05 to 25956 a day later). This means the data is currently useless; however it does bring it close to the Johns Hopkins/CSSE count (25626 on 2020-05-06). The aggregate US count is based on JH/CSSE so unaffected. We now use Johns Hopkins/CSSE US state data, including all states with sufficient counts. So the new forecasts cannot be compared to those previously.
A minor change is that we show the graph without scenario forecast if no peak has been detected yet.
[2020-04-29] See our blog entry at the International Institute of Forecasters.
US history of death counts revised in Johns Hopkins/CSSE data.
UK death counts have been revised to include the deaths in care homes. In the Johns Hopkins/CSSE data set, which we use, the entire history has been revised. So forecasts made up to 2020-04-29 cannot be compared to later outcomes. In the ECDC data set only the last observation has changed, causing a jump in the series.
[2020-04-27] Our short-term COVID-19 forecasting paper is now available as Nuffield Economics Discussion Paper 2020-W06.
A small adjustment has been made to the scenario forecast methodology, and will be documented shortly.
[2020-04-24] A summary of our work on short-term COVID-19 forecasting appeared as a voxeu.
[2020-04-17] Bird and Nielsen look into nowcasting death counts in England.
[2020-04-16] Added scenario forecasts to all graphs now. This would now be the preferred forecast for most.
This is the first time with a peak in confirmed UK cases (also for deaths, but this is uncertain because it is at the same date).
[2020-04-10] Updated documentation with better description of short-term estimates and peak determination.
[2020-04-09] Added table with estimated peak dates (if happened) and dates to and since the peak. Note that this can be a local peak, and subsequent re-acceleration (or data revisions) can result in a new peak later.
[2020-04-08] Minor correction to peak estimates. Added table with scenario forecasts.
[2020-04-06] Added a post hoc estimate of the peak number of cases. This needs at least three confirmed observations (four for deaths) after the event. It is based on the averaged smooth trend, and can change later or be a local peak. It is marked with a vertical line with the date label, or a date with left arrow in the bottom left corner of the graph. This is backported to 2020-04-04.
[2020-04-02] Now including more US States, based on New York Times data.
[2020-03-31] Scenario forecasts, based on what happened in China earlier this year, are presented for several countries (line marked with x). Created more plausible 90% confidence bands (dotted line in same colour).
[2020-03-26] Scenario forecasts that are based on what happened in China earlier this year, only for Italy.
[2020-03-24] Our forecasts are starting to overestimate in some cases. This was always expected to happen when the increase starts to slow down. Scenario forecasts that are based on what happened in China earlier this year, but only for Italy and Spain sofar.

Initial visual evaluation of forecasts of Deaths