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forgetting some, we wish to thank Willem Adema, Peter Boswijk, Gunnar Bårdsen,
Mike Clements, Neil Ericsson, Bernd Hayo, Hans-Martin Krolzig, Bent Nielsen, Mar-
ius Ooms, Jaime Marquez, and Neil Shephard for their help. We are also grateful to
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and Giovanni Urga for their many helpful comments on the documentation for PC-
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MikTeX in combination with Scientific Word and OxEdit eased the development
of the documentation in LaTeX, further facilitated by the more self-contained nature of
recent PcGive versions and the in-built help system.

Over the years, many users and generations of students have written with helpful
suggestions for improving and extending PcGive, and while the current version will
undoubtedly not yet satisfy all of their wishes, we remain grateful for their comments
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thank Kate for her support and encouragement.
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Chapter 1

Introduction to PcGive

1.1 The PcGive system

PcGive is an interactive menu-driven program for econometric modelling. PcGive ver-
sion 16, to which this documentation refers, runs under Windows, Linux and OS X.
PcGive originated from the AUTOREG Library (see Hendry and Srba, 1980, Hendry;
Hendry, 1986b, 1993, Doornik and Hendry, 1992, and Doornik and Hendry, 1994), and
is part of the OxMetrics family.

The econometric techniques of the PcGive system can be organized by the type of
data to which they are (usually) applied. The documentation comprises three volumes,
and the overview below gives in parenthesis whether the method is described in Volume
I, II or III. Volume IV refers to the PcNaive book.

• Models for cross-section data
– Cross-section Regression (I)

• Models for discrete data
– Binary Discrete Choice (III): Logit and Probit
– Multinomial Discrete Choice (III): Multinomial Logit
– Count data (III): Poisson and Negative Binomial

• Models for financial data
– GARCH Models (III): GARCH in mean, GARCH with Student-t, EGARCH,

Estimation with Nelson&Cao restrictions
• Models for panel data

– Static Panel Methods (III): within groups, between groups
– Dynamic Panel Methods (III): Arellano-Bond GMM estimators

• Models for time-series data
– Single-equation Dynamic Modelling (I), optionally using Autometrics
– Multiple-equation Dynamic Modelling (II): VAR, cointegration, simultaneous

equations analysis, optionally using Autometrics
– Regime Switching (V): Markov-switching models
– ARFIMA Models (III): exact maximum likelihood, modified-profile likelihood

3
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or non-linear least squares
– Seasonal adjustment using X12Arima (III): regARIMA modelling, Automatic

model selection, Census X-11 seasonal adjustment.
• Monte Carlo

– AR(1) Experiment using PcNaive (IV)
– Static Experiment using PcNaive (IV)
– Advanced Experiment using PcNaive & Ox Professional (IV)

• Other models
– Nonlinear Modelling (I)
– Descriptive Statistics (I):

* Means, standard deviations and correlations
* Normality tests and descriptive statistics
* Autocorrelations (ACF) and Portmanteau statistic
* Unit-root tests
* Principal component analysis

PcGive uses OxMetrics for data input and graphical and text output. OxMetrics is
described in a separate book (Doornik and Hendry, 2022b). Even though PcGive is
largely written in Ox (Doornik, 2021), it does not require Ox to function.

1.2 Single equation modelling
This book describes the single equation modelling features of PcGive. This part of
PcGive is designed for modelling economic data when the precise formulation of the
relationship is not known a priori. The present version is for individual equations with
jointly determined, weakly or strongly exogenous, predetermined, and lagged endoge-
nous variables. A wide range of individual equation estimation methods is available.
Particular features of the program are its ease of use, edit facilities, flexible data han-
dling, extensive set of preprogrammed diagnostic tests, its focus on recursive methods,
supported by powerful graphics, and the availability of automatic model selection. Sys-
tem estimation methods are incorporated in PcGive, but described in a separate volume.

The documentation aims to provide an operational approach to econometric mod-
elling using the most sophisticated yet easy-to-use software available. Thus, this book is
especially extensive to fully explain the econometric methods, the modelling approach,
and the techniques used, as well as bridge the gap between econometric theory and
empirical practice. It transcends the old ideas of ‘textbooks’ and ‘computer manuals’
by linking the learning of econometric methods and concepts to the outcomes achieved
when they are applied by the user at the computer. Because the program is so easy
to learn and use, the main focus is on its econometrics and application to data analy-
sis. Detailed tutorials in Chapters 2–10 teach econometric modelling by walking the
user through the program in organized steps. This is supported by clear explanations of
econometrics in Chapters 11–16. The material spans the level from introductory to fron-
tier research, with an emphatic orientation to practical modelling. The exact definitions
of all statistics calculated by PcGive are described in Chapters 17–19. The context-
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sensitive help system supports this approach by offering help on both the program and
the econometrics.

This chapter discusses the special features of PcGive, describes how to use the doc-
umentation, provides background information on data storage, interactive operation,
help, results storage, and filenames, then outlines the basics of using the program (often
just point-and-click with a mouse).

1.3 The special features of PcGive

1. Ease of use
• PcGive is user friendly, being a fully interactive and menu-driven approach

to econometric modelling: pull-down menus offer available options, and dialog
boxes provide access to the available functions.

• PcGive has a high level of error protection, making it suitable for students ac-
quiring experience in econometrics on computers, for live teaching in the class-
room, or fraught late-night research.

• PcGive provides an extensive context-sensitive help system explaining both the
program usage and the econometrics.

• High quality screen presentations in edit windows allow documentation of
results as analysis proceeds, with easy review of previous results and cutting
and pasting within or between windows.

• Both text and graphics can be controlled by a mouse, allowing powerful and
flexible editing, rapid menu and dialog access, and easy documentation of
graphs.

• Estimation options can be set to automatically activate or inhibit model eval-
uation procedures, set the format for results presentation and control the detail
and sophistication of the output.

2. Advanced graphics
• OxMetrics provides easy adjustment of graph types, layout and colours.
• As many as 36 graphs can be shown simultaneously, with easy user control or

automatic selection.
• Graphs can be documented and edited via direct screen access with reading

from the graph.
• Time series and cross-plots are supported with flexible adjustment and scaling

options, including several bivariate linear regression lines with joint presentation
of reverse regressions, or non-parametric fits, as well as spectra, correlograms,
histograms and data densities.

• Descriptive results, recursive statistics, diagnostic tests, likelihood projec-
tions and forecasts can be graphed in many combinations.

3. Flexible data handling in OxMetrics
• The data handling system provides convenient storage of large data sets with

easy loading to PcGive either as a unit, or for subsamples or subsets of variables.
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• Excel and csv spreadsheet files can be loaded directly, or using ‘cut and paste’
facilities.

• Large data sets can be analyzed, with with as many variables and observations
as memory allows.

• Database variables can be transformed by a calculator, or by entering mathe-
matical formulae in an editor with easy storage for reuse; the database is easily
viewed, incorrect observations are simple to revise, and variables can be docu-
mented on-line.

• Appending across data sets is simple, and the data used for estimation can be
any subset of the data in the database.

• Several data sets can be open simultaneously, with easy switching between the
database.

4. Efficient modelling sequence
• The underlying Ox algorithms are fast, efficient, accurate and carefully

tested; all data are stored in double precision.
• PcGive is designed specifically for modelling time-series data, and creates lags,

and analyzes dynamic responses and long-run relations with ease; it is simple
to change sample, or forecast, periods or estimation methods: models are re-
tained for further analysis, and general-to-specific sequential simplifications are
monitored for reduction tests.

• The structured modelling approach is fully discussed in this book, and guides
the ordering of menus and dialogs, but application of the program is completely
at the user’s control.

• The estimators supported include least squares, instrumental variables, error
autocorrelation, non-linear least squares, and non-linear maximum likelihood:
powerful numerical optimization algorithms are embedded in the program with
easy user control and most methods can be calculated recursively over the avail-
able sample.

• PcGive incorporates Autometrics for automatic model selection.
• PcGive offers powerful preprogrammed testing facilities for a wide range

of hypotheses of interest to econometricians and economists undertaking sub-
stantive empirical research, including tests for unit roots, dynamic specification,
cointegration, linear restrictions and common factors.

• PcGive is also applicable to cross-section data and most of its facilities and
tests are available for such analyses.

• Large models can be formulated, with no restrictions on size, apart from those
imposed by available memory.

• A Batch language allows automatic estimation and evaluation of models, and
can be used to prepare a PcGive session for teaching.

5. Thorough evaluation
• Equation mis-specification tests are automatically provided, including resid-

ual autocorrelation, autoregressive conditional heteroscedasticity (ARCH), het-
eroscedasticity, functional form, parameter constancy, and normality (with
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residual density functions), as well as a complete set of encompassing tests.
• The recursive estimators provide easy graphing of coefficients and residu-

als with their confidence intervals, or ‘t’-values: parameter constancy statistics
scaled by selected nominal significance levels are also calculated.

• All estimators provide graphs of fitted/actual values, residuals, and forecasts
against outcomes with 1-step error bars.

6. Output
• Graphs can be saved in several file formats including for later recall, further

editing, and printing, or for importing into many popular word processors, as
well as directly by ‘cut and paste’

• Results window information can be saved as an ASCII (human readable) doc-
ument for input to most word processors, or directly input by ‘cut and paste’.

• Model residuals and recursive output can be stored in the database for addi-
tional graphs or evaluation.

We now consider some of these special features in greater detail.

Advanced graphics
• Users have full control over screen and graph colours. The colour, type (solid,

dotted, dashed etc.) and thickness of each line in a graph can be set; graphs can be
drawn inside boxes, and with or without grids; axis values can be automatic or user
defined; areas highlighted as desired; and so on.

• Up to 36 different graphs can be shown simultaneously on-screen, which is espe-
cially valuable for graphical evaluation of equations and recursive methods. Com-
binations of graphs displaying different attributes of data can be shown simultane-
ously — examples are reported below.

• Once on-screen, text can be entered for graph documentation, or a mouse used to
highlight interesting features during live presentations. Graphs can be both rapidly
saved and instantly recalled. Coordinates can be read from each graph, however
many are displayed at once.

• Much of PcGive’s output is provided in graphical form which is why it is written
as an interactive (and not a batch) program. Dozens of time series can be graphed
together using a wide range of adjustment and prescaling options. Two variables
can be cross-plotted as points or joined by lines (to show historical evolution), with
least-squares lines for subsamples, selected recursively (so growing in size) or se-
quentially (a fixed % of the whole sample), showing projections of points from the
lines; alternatively, both bivariate regression lines and/or a non-parametric regres-
sion can be drawn. Or they can be plotted by the values of a third variable. Spectral
densities, correlograms, histograms and interpolated data densities and distributions
also can be graphed in groups of up to 36.

• The option to see multiple graphs allows for more efficient evaluation of large
amounts of information. Blocks of graphs can simultaneously incorporate descrip-
tive results (fitted and actual values, scaled residuals and forecasts etc.) and diag-
nostic test information; or show many single-parameter likelihood grids.
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Efficient modelling sequence
• Dynamic econometrics involves creating and naming lagged variables, controlling

the available sample and forecast period etc., and assigning the appropriate status
to all variables, so such operations are either automatic or very easy. The basic Pc-
Give operator is a lag polynomial. Long-run solutions, unit-root tests, cointegration
tests, the significance of lagged variables (or groups of lags), the choice between
deterministic or stochastic dynamics, roots of lag polynomials, tests for common
factors etc. are all calculated. If the recommended general-to-specific approach to
model construction is adopted, the sequence of reductions is monitored and F-tests,
information criteria etc. are reported.

• This extensive program book seeks to bridge the gap between econometric theory
and empirical modelling: the tutorials walk the user through every step from in-
putting data to the final selected econometric model of the variables under analysis.
The econometrics chapters explain the theory and methods with reference to the
program with detailed explanations of all the estimators and tests. The statistical
output chapters carefully define all the estimators and tests used by PcGive.

• The ordering of the menus and dialogs is determined by the theory: first estab-
lish a data coherent, constant parameter model, investigate cointegration, reduce
the model to a stationary, near orthogonal and simplified representation and finally
check for parsimonious encompassing of the system: see Hendry and Ericsson
(1991) and Hendry (1993), Hendry (1995a) for further details. Nevertheless, the
application and sequence of the program’s facilities remain completely under the
user’s control.

• Estimation methods currently supported include ordinary and recursive least
squares, two-stage least squares, instrumental variables and recursive instrumen-
tal variables, rth-order autoregressive least squares, non-linear least squares and
recursive non-linear least squares and maximum likelihood. models are easily re-
vised, transformed and simplified; up to 15 models are remembered for easy recall
and progress evaluation.

• Powerful testing facilities for a wide range of specification hypotheses of interest
to econometricians and economists undertaking substantive empirical research are
preprogrammed for automatic calculation. Available tests include dynamic specifi-
cation, lag length, cointegration, and tests of reduction or parsimonious encompass-
ing. Wald tests of linear restrictions are easily conducted.

• Automatic model selection is a recent advance in computational usage of econo-
metrics. Starting from a general unrestricted model (denoted GUM), PcGive can
implement the model reduction for you–usually outperforming even expert econo-
metricians. There are facilities for building models when there are more candidate
variables than observations.

Thorough evaluation
• Evaluation tests can either be automatically calculated, calculated in a block as

a summary test option, or implemented singly or in sets merely by selecting the
relevant dialog option. A comprehensive and powerful range of mis-specification
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tests is offered to sustain the methodological recommendations about model evalua-
tion. Equation mis-specification tests include residual autocorrelation, ARCH, het-
eroscedasticity, functional form mis-specification and normality. Constancy tests
can be computed automatically or via recursive procedures. A range of encompass-
ing tests can be undertaken (just by a single keystroke or click!) once two rival
models have been estimated.

• Graphical diagnostic information includes plots of residual autocorrelation func-
tions, residual density functions and histograms, and QQ plots.

• Much of the power of PcGive resides in its extensive use of recursive estimators.
These provide voluminous output (coefficients, standard errors, t-values, residual
sums of squares, 1-step residuals and their standard errors, constancy tests etc. at
every sample size), but recursive statistics can be graphed for easy presentation (up
to 36 graphs simultaneously). The size of models is only restricted by the available
memory, as long as fewer than 100 variables are involved.

• All estimators provide graphs of residuals, fitted and actual values and their cross-
plots, as well as 1-step forecasts or forecast errors with 95% confidence intervals
shown by error bars.

• Full graphics facilities can be applied to any or all of these graphs (e.g., adding
regression lines etc.)

Considerable experience has demonstrated the practicality and value of using Pc-
Give as an operational complement to learning econometrics and conducting empir-
ical studies. It is also easy and helpful to run PcGive live in classroom teaching as
an adjunct to theoretical derivations. On the research side, the incisive recursive esti-
mators, the wide range of preprogrammed tests, and the powerful automatic selection
algorithms make PcGive the most powerful interactive econometric modelling program
available; Chapter 16 discusses its application to a range of important practical econo-
metrics problems. These roles are enhanced by the flexible and informative graphics
options provided.

1.4 Documentation conventions
The convention for instructions that you should type is that they are shown in
Typewriter font. Capitals and lower case are only distinguished as the names of
variables in the program and the mathematical formulae you type. Once OxMetrics
has started, then from the keyboard, the Alt key accesses line menus (at the top of the
screen); from a mouse, click on the item to be selected using the left button. Common
commands have a shortcut on the toolbar, the purpose of which can be ascertained by
placing the mouse on the relevant icon. Icons that can currently operate are highlighted.
Commands on menus, toolbar buttons, and dialog items (buttons, checkboxes etc.) are
shown in Sans Serif font.

Equations are numbered as (chapter.number); for example, (8.1) refers to equation
8.1, which is the first equation in Chapter 8. References to sections have the form
§chapter.section, for example, §8.1 is Section 8.1 in Chapter 8. Tables and Figures are
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shown as Figure chapter.number (e.g.) Figure 5.2 for the second figure in Chapter 5.
Multiple graphs are numbered from left to right and top to bottom, so (b) is the top-right
graph of four, and (c) the bottom left.

1.5 Using PcGive documentation
The documentation comes in five main parts: Part I comprises this introductory chapter,
and instructions on starting the program. Part II then has six extensive tutorials on all
aspects of econometric modelling, emphasizing the data analytic facilities over simply
program usage. Part III has six chapters discussing the econometrics of PcGive from in-
troductory to advanced levels. Part IV offers a detailed description of the statistical and
econometric output of PcGive. Finally, Part V contains appendices. The documenta-
tion ends with references and a subject index. As discussed above, the aim is to provide
a practical textbook of econometric modelling, linking the econometrics of PcGive to
empirical modelling through tutorials which implement applied modelling exercises. In
more detail:
1. A separate book explains and documents the companion program OxMetrics which

records the output and provides data loading and graphing facilities.
2. The Prologue discusses the main feature provided by PcGive, sketches how to use

the program and illustrates some of its output. In particular, Chapter 2 provides a
quick start for the PcGive system.

3. The Tutorials in Chapters 2 to 10 are specifically designed for joint learning of
econometric analysis and use of the programs. They describe using the editor, data
input, graphics control, dynamic model formulation, estimation and evaluation; dy-
namic analysis; econometric modelling; and advanced features. By implementing
empirical research exercises, they allow rapid mastery of PcGive and an understand-
ing of how the associated econometric theory operates in practice.

4. The Econometric overview in Chapter 11 briefly reviews the background econo-
metrics of PcGive.

5. Chapters 12–16 explain the Econometrics at all levels from elementary, through
intermediate to advanced, including Chapter 14 covering statistical theory, as well
as a chapter on important practical problems.

6. The Statistical Output in Chapters 17 to 19 explain in detail the econometric and
statistical calculations of PcGive.

7. Chapter A1 gives information about PcGive languages. The on-line help system
documents the menu structure and dialogs. Most dialogs are easy to understand, but
the on-line help can be accessed at any time if required.
The appropriate sequence is to first install PcGive on your system. Next, read the

remainder of this introduction, then follow the step-by-step guidance given in the tuto-
rials to get familiar with the operation of PcGive. Part III explains the required econo-
metrics, starting at an elementary level and building up to advanced tools.

To use the documentation, either check the index for the subject, topic, menu or di-
alog that seems relevant; or look up the part relevant to your current activity (for exam-
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ple, econometrics, tutorials or description) in the Contents, and scan for the most likely
keyword. The references point to relevant publications which analyze the methodology
and methods embodied in PcGive.

1.6 PcGive help system
The PcGive help system is located at OxMetrics9/doc/pcgive/index.html. This
can also be started from the OxMetrics Help menu, giving access to the books, descrip-
tion of the Ox functionality for programmatic use, and the batch system.

1.7 Citation
To facilitate replication and validation of empirical findings, PcGive should be cited in
all reports and publications involving its application. The appropriate form is to cite
PcGive in the list of references.

1.8 World Wide Web
Consult www.doornik.com or www.doornik.com/pcgive for pointers to additional
information relevant to the current and future versions of PcGive. Upgrades are made
available for downloading if required, and a demonstration version is also made avail-
able.

1.9 Some data sets
Tutorial data sets can be found at OxMetrics9/data.

The data used in Hendry (1995a) is provided in the files ukm1.in7/ukm1.bn7.
The DHSY data (see Davidson, Hendry, Srba, and Yeo, 1978) is supplied in the files
dhsy.in7/dhsy.bn7. An algebra file, dhsy.alg, contains code to create variables
used in the paper. A batch file, dhsy.fl, loads the data, executes algebra code, and
estimates the two final equations reported in the paper.

For the data sets used in Hendry and Morgan (1995), consult:
www.nuff.ox.ac.uk/users/hendry.

Data sets accompanying Hendry and Nielsen (2007) can be found at
www.nuff.ox.ac.uk/users/nielsen/EconometricModeling.





Part II

PcGive Tutorials





Chapter 2

Tutorial on Cross-section Regression

2.1 Starting the modelling procedure

The purpose of this tutorial is to explain the use of PcGive for estimating linear regres-
sion equations. The background to regression and least squares estimation methods is
explained in Chapters 12 and 13. If you are unfamiliar with regression, proceed with
this chapter till you feel lost, then read Chapter 12 and return here later. Our starting
point is cross-section regression, because that has fewer options than dynamic regres-
sion, making it easier to use.

Start OxMetrics, and load the data.oxdata data files in OxMetrics as explained
in the OxMetrics book. If you have used this data set in a previous session, you can
right-click on the Data folder in the workspace, and look under Open Recent Data

File in the context menu. We assume that you’ve made yourself somewhat familiar with
OxMetrics first, for example by reading the getting started chapters in the OxMetrics
book.

You can start modelling with PcGive from OxMetrics in three ways:

• By clicking on the Model entry under Modules in the workspace on the left-hand
side.

• Via Model on the Model menu.
• Using the Model toolbar button:

Once started, the databases loaded in OxMetrics are accessible from PcGive.

The modelling dialog gives access to all the modelling features of the OxMetrics
applications, including PcGive. The first step is to select a model category, and for
the category a model class. The images at the top allow you to see the choices for all
available applications, or to restrict it to a specific app such as PcGive. In your case,
it is likely that Module is set to all (if not, click on the OxMetrics item for All, or on
PcGive):

15
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Before we can estimate our first model, we have two choices to make:
1. Change the Category to Models for cross-section data:

2. select a model class; in this case there is only one:

To facilitate the modelling process, PcGive has several model classes, from cross-

section regression to multiple-equation dynamic modelling. They are categorized
according to the type of data to which they usually apply. Two separate classes
are for non-linear modelling and descriptive statistics. These are not particularly
associated with a data type, and fall in separate categories.
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2.2 Formulating a regression

Selecting the cross-section regression using PcGive class, and pressing the Formulate

button takes you to the Model Formulation dialog:

This is a dialog which you will use often, so, at the risk of boring you, we consider it
in detail. At the bottom are the two familiar OK and Cancel buttons, while the remainder
is grouped in three columns. On the right are the variables that can be added to the
model and the databases that are open in OxMetrics. In the middle are buttons for
moving between the database and the selection (i.e. the model). For dynamic models,
the lag length is also there. On the left is current selection, options to change status, and
the possibility to recall previous models.

The following actions can be taken in this dialog:
• Mark a variable by clicking on it with the mouse. To select several variables, use

the Ctrl key with the mouse, to select a range, use Shift plus the mouse.
• Press >> to add selected variables to the model.
• Double click to add a database variable to the model.
• Remove a model variable by pressing >> or double clicking.
• Empty the entire model formulation by pressing Clear>>.
• The box immediately below the database contains the so-called ‘special’ variables

(only Constant here). These are made available even when not present in the
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database, and are added to the selection in the same way as database variables.
• Below that, still on the database side, is the option to change databases, if more than

one are open in OxMetrics. Select data.oxdata here: the model only works on
one database.

• On the left-hand side, below the selection (the model formulation), is a drop-down
box to change the status of selected variables. It becomes active when a selection
variable is selected. For the cross-section regression there are five types:
Y the endogenous (dependent) variable, by default the first,
Z regressor, the default for all other variables,
A an additional instrument (for instrumental variables estimation, see Ch. 8),
U marks a variable as unrestricted, which will always force it in the model when

Autometrics is used.
S an optional variable to select observations by.
To change status, select one or more variables, then a status type, and click on Set.
It is also possible to change status by right-clicking on a variable.

• Finally, the last drop-down box below the selection allows the recall of a previously
formulated model (none as yet).
Select CONS and INC, and add the marked variables to the model, as shown in the

capture below:

The marked variable that is highest in the database becomes the dependent variable,
because it is the first to enter the model. A two-step procedure might be required to
make a lower variable into the dependent variable: first mark and add the dependent
variable, then add the remaining variables.

Note that a Constant is automatically added, but can be deleted if the scale of the
variables lets a regression through the origin have meaning. CONS is marked with a Y to
show that it is an endogenous (here, the dependent) variable. The other variables do not
have a status letter, and default to regressor (Z). The dropdown box shows all available
types of variables:
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2.3 Cross-section regression estimation
Pressing the Next button in the Model Formulation dialog jumps to the Settings dialog,
which offers the option to use automatic model selection with Autometrics:

Leave that off, and continue to the Estimation dialog.

Other ways of activating the Estimation dialog from OxMetrics are the short-cut key
Alt+l, in which the l stands for least squares; however, the toolbar button (the second:
the blocks put together) will be the most convenient way of activating the dialog.

This style of dialog is used througout PcGive. It presents a list of options: check
boxes, edit fields, radio buttons etc. To change a value, click on the item with the mouse.
A check box and radio button changes immediately; for an edit field the value can be
changed in the edit box. From the keyboard use the arrow up and down buttons to move
between items, and the space bar to change the value. Pressing the return key has the
same effect as clicking the Next button, unless the caret is in an edit field.

Under cross-section regression, the only available option is estimation by ordinary
least squares (OLS) (unless the model has more than one endogenous variable — ad-
ditional estimation methods are discussed in Chapter 8).

The dialog allows selection of the sample period: by default the full sample is used
after deleting observations which have missing values (as we shall discuss later, the
sample can also be selected by a variable).

Press the Next button (or Enter) to estimate the model.
The equation we fitted is:

CONSi = a+ bINCi + ui

where a and b are selected to minimize the sum of squares of the {ui}. The resulting
estimated values for a and b are written â and b̂.
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2.3.1 Simple regression output

The regression results are written to the Results window. As you may already know, this
window does not reside in PcGive, but in OxMetrics. After estimation, focus switches
automatically to the Results window in OxMetrics. The output is:

EQ( 1) Modelling CONS by OLS (static model)
The dataset is: \OxMetrics9\data\data.oxdata
The estimation sample is: 1953(1)...1992(3)

Coefficient Std.Error t-value t-prob Part.R^2
Constant -181.270 30.03 -6.04 0.0000 0.1884
INC 1.18563 0.03367 35.2 0.0000 0.8876

sigma 4.55370 RSS 3255.58444
R^2 0.887596 F(1,157) = 1240 [0.000]**
Adj.R^2 0.88688 log-likelihood -465.639
no. of observations 159 no. of parameters 2
mean(CONS) 875.94 se(CONS) 13.5393

Normality test: Chi^2(2) = 2.6774 [0.2622]
Hetero test: F(2,156) = 3.0137 [0.0520]
Hetero-X test: F(2,156) = 3.0137 [0.0520]
RESET23 test: F(2,155) = 33.554 [0.0000]**

These results cannot be regarded as substantive but their meaning can be described.
To do so, we remain in OxMetrics, and turn to a scatter plot of CONS and INC. Access
the Graphics dialog and graph a scatter plot of CONS against INC. Then double click on
the graph to add a regression line with projections: the outcome is shown in Fig. 2.1.

CONS × INC 
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CONS × INC 

Figure 2.1 Cross-plot of CONS against INC

The slope of the line is the tangent of the angle at b: a tangent is calculated by the
ratio of the length opposite over the length adjacent. Using the point facility (Alt+p)
to read off the values at the two extremes of the line as drawn, we find the approximate
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slope:

b̂ =
(896.864− 853.136)

(909.367− 872.379)
=

43.728

36.988
= 1.182.

This value closely matches the coefficient just reported.
The intercept is the value of CONS when INC equals zero, or more usefully, using an

overbar − to denote the mean value, a is given by:

â = CONS− b̂× INC.

To calculate the mean values, set focus to the data.oxdata database in OxMetrics,
and select Summary statistics from the View menu. The results from the descriptive
statistics are (we deleted the minimum and maximum):
Database: data.oxdata
Sample: 1953(1) - 1992(3) (159 observations)
Variables: 4
Variable leading sample #obs #miss minimum mean maximum std.dev
CONS 1953( 1)-1992( 3) 159 0 853.5 875.94 896.83 13.497
INC 1953( 1)-1992( 3) 159 0 870.22 891.69 911.38 10.725
INFLAT 1953( 1)-1992( 3) 159 0 -0.6298 1.7997 6.4976 1.2862
OUTPUT 1953( 1)-1992( 3) 159 0 1165.9 1191.1 1213.3 10.974

Substituting the means of the variables into our formula, we obtain:

â = 875.94− 1.182× 891.69 = −178.

Thus, the regression coefficients simply show the values of the slope and intercept
needed to draw the line in Figure 2.1. Their interpretation is that a unit increase in INC

is associated with a 1.18 unit increase in CONS. If the data purport to be consumption
expenditure and income, we should be suspicious of such a finding taken at face value.
However, there is nothing mysterious about regression: it is simply a procedure for
fitting straight lines to data. Once we have estimated the regression coefficients â and
b̂, we can compute the fitted values:

ĈONSi = â+ b̂ INCi,

and the residuals
ûi = CONSi − ĈONSi.

The fitted values correspond to the straight line in Fig. 2.1, and the residuals to the
vertical distance between the observed CONS values and the line (as drawn in the graph).

Next, the standard errors (SEs) of the coefficients reflect the best estimate of the
variability likely to occur in repeated random sampling from the same population: the
coefficient ±2SE provides a 95% confidence interval. When that interval does not
include zero, the coefficient is often called ‘significant’ (at the 5% level). The number 2
derives from the assumption that β̂ has a student-t distribution with n− k = 159− 2 =

157 degrees of freedom. This, in turn, we know to be quite close to a standard normal
distribution, and: P (|Z| > 2) ≈ 95% where Z ∼ N (0, 1).
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The t-value of b̂ is the ratio of the estimated coefficient to its standard error:

tb =
b̂

SE
(
b̂
) =

1.18563

0.03367
= 35.2.

This can be used to test the hypothesis that b is zero (expressed as H0 : b = 0). Under
the current assumptions we reject the hypothesis if tb > 2 or tb < −2 (again, using
a 95% confidence interval, in other words, a 5% significance level), so values with
|t| > 2 are significant. Here, the non-random residuals manifest in Figure 2.1 make the
interpretation of the SEs suspect (in fact, they are downwards biased here, and hence
the reported ‘t’-values are artificially inflated – despite that, they are so large that even
the ‘correct’ SEs would yield t-values greater than 2 in absolute value).

The last statistic in the regression array is the partial r2. This is the squared cor-
relation between the relevant explanatory variable and the dependent variable (often
called regressor and regressand respectively), holding all other variables fixed. For the
regression of CONS on INC, there are no other variables (after all, the Constant is not
called that for nothing!), so the partial r2 equals the simple correlation squared (shown
above in the descriptive statistics output). As can be seen, that is also the value of the
coefficient of multiple correlation squared, R2, which measures the correlation between
the actual values CONSi and the fitted values ĈONSi, and is reported immediately below
the regression output. When there are several regressors, r2 and R2 differ.

Moving along the R2 row of output, the F-test is a test of R2 = 0. For a bivariate
regression, that corresponds precisely to a test of b = 0 and can be checked using
the fact that t2(k) = F(1, k). Here, (35.21)2 = 1239.74 which is close for a hand
calculation. The next item [0.000] is the probability that F = 0, and the ∗∗ denotes that
the outcome is significant at the 1% level or less.

The value of σ̂ is the standard deviation of the residuals, usually called the equation
standard error:

σ̂ =

√√√√ 1

n− k

n∑
t=1

û2i ,

for n observations and k estimated parameters (regressors). Since the errors are as-
sumed to be drawn independently from the same distribution with mean zero and con-
stant variance σ, an approximate 95% confidence interval for any one error is 0 ± 2σ̂.
That represents the likely interval from the fitted regression line of the observations.
When σ̂ = 4.55, the 95% interval is a huge 18.2% of CONS – the government would
not thank you for a model that poor, as it knows that consumers’ expenditure rarely
changes by more than 5% from one year to the next even without your model. We learn
that not all regressions are useful. RSS is the acronym from residual sum of squares,
namely

∑n
t=1 û

2
i , which can be useful for hand calculations of tests between different

equations for the same variable.
Finally, the last line gives the mean and variance of the dependent variable. The
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variance corresponds to the squared standard deviation:1

CONS =
1

n

n∑
i=1

CONSi, [se(CONS)]2 = σ̂2
y =

1

n− 1

n∑
i=1

(
CONSi − CONS

)2
.

2.4 Regression graphics
Of course, there are other ways to represent the findings, and one of the more useful is
a time-series graph of the fitted values, namely ĈONSi, with the outcomes, a cross-plot
of the same two variables, and the scaled residuals:

ûi =

(
CONSi − ĈONSi

)
σ̂

.

These graphs are already shown in OxMetrics in the Model graphics window:

More options are available. To see this click on the Graphic Analysis toolbar button
in OxMetrics, or, less directly, select the Test menu; again there are three ways Alt+t,
Model/Test or the Test toolbar button. Select Graphic analysis:

1Note that the column labelled std.dev in the summary statistics uses n in the denominator
giving 13.497 for CONS. The regression output reports se(CONS)=13.5393, because it uses n− 1.
Also see §18.2.11.
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The Graphic analysis dialog lets you plot and/or cross-plot the actual and fitted
values, the residuals scaled by σ̂, the forecasts if any were assigned, and a variety of
graphical diagnostics to which we return below. Mark Actual and fitted values, Cross
plot of actual and fitted, and Residuals (scaled) as shown here:

Accepting produces Figure 2.2 in OxMetrics. Any graphs can be saved, edited or
printed.

The first plot shows the ‘track’ of the outcome by the fitted model as time series.
The overall tracking is fair, but is not very precise. This is perhaps easier to see here
from the cross-plot, where two groups of scatters can be seen on either side of 875: the
outcome would be a straight line for a perfect fit. Finally, the scaled residuals do not
look very random: when the value is high in one period, you can see that it is more
likely to be high again in the next period, and similarly low (that is, large negative)
values are followed by other low values.
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Figure 2.2 Goodness-of-fit graphs for bivariate model of CONS

2.5 Testing restrictions and omitted variables
We will only compute two tests in this part of the tutorial: the first is for a subset of the
regressors being zero. With only one actual variable, there is not much scope, but we
can check that the test yields the same outcome as the (squared) t-test already reported.
Select the Test menu, Exclusion restrictions, and mark INC. Now accept to produce:

Test for excluding: INC
Subset F(1,157) = 1239.8 [0.0000]**

This is identical to the F-test value above.
The same test can be made through Test/Linear Restrictions. In this case restrictions

are entered in the form
Rβ = r,

where β is the k×1 coefficient vector, R the s×k restrictions matrix when s restrictions
are imposed, and r the desired value of the summation, an s × 1 vector. For a single
restriction in our simple model:

(
R11 R12

)( a

b

)
= r1.

Specifically, to test that b is zero:

(
0 1

)( a

b

)
= 0.
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Access Test/Linear Restrictions and enter 0 1 0 in the edit field. The format is R

followed by r, so the leading 0 1 are the elements of R, and the final zero is r:

Further examples are given in the next chapter. Press OK to see:
Test for linear restrictions (Rb=r):
R matrix

Constant INC
0.00000 1.0000

r vector
0.00000

LinRes F(1,157) = 1239.8 [0.0000]**

As a second test, we consider adding a variable to the existing model. Select
Test/Omitted variables and mark INFLAT as in:

This dialog offers a choice of lag length, provided that the lagged variables match the
estimation sample (so no lags can be added here ). Accept to obtain:
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Omitted variables test: F(1,156) = 149.07 [0.0000] **
Added variables:
[0] = INFLAT

This result strongly suggests that INFLAT has an important impact on the relation
between CONS and INC, as the hypothesis that the effect is zero would essentially never
produce such a large test outcome by chance.

2.6 Multiple regression

That last result suggests using a multiple explanatory variable model, with both INC

and INFLAT as regressors. From a methodological viewpoint, expanding a model in
response to test rejections is not a good way to do research: we could have found 10
different flaws with the first regression, and where we finally ended up would depend
critically on the order in which we ‘fixed’ them. However, in a tutorial on the use of
the program, we can claim some poetic licence and proceed to the more interesting
stage of a multiple regression by adding INFLAT to the set of regressors. Select Model,
Formulate using the toolbar button, or the ‘hot-key’ Alt+y (remember yi is usually the
symbol for the dependent variable in econometrics since Koopmans, 1950).

Double click on INFLAT to add it to the model. Click on OK – then OK (or the
Enter key) again at the Estimation dialog to obtain:

EQ( 2) Modelling CONS by OLS (static model)
The dataset is: .\OxMetrics9\data\data.oxdata
The estimation sample is: 1953(1)...1992(3)

Coefficient Std.Error t-value t-prob Part.R^2
Constant -147.390 21.72 -6.79 0.0000 0.2279
INC 1.15263 0.02431 47.4 0.0000 0.9351
INFLAT -2.47468 0.2027 -12.2 0.0000 0.4886

sigma 3.26673 RSS 1664.75821
R^2 0.942522 F(2,156) = 1279 [0.000]**
Adj.R^2 0.941785 log-likelihood -412.319
no. of observations 159 no. of parameters 3
mean(CONS) 875.94 se(CONS) 13.5393

Normality test: Chi^2(2) = 3.2519 [0.1967]
Hetero test: F(4,154) = 0.26558 [0.8997]
Hetero-X test: F(5,153) = 0.24667 [0.9409]
RESET23 test: F(2,154) = 44.116 [0.0000]**

The added variable is apparently highly significant (but we shall see that we cannot
trust in the standard errors reported).

The square of the t-test on INFLAT is precisely the Omitted variable F-test. Other-
wise, the INC coefficient is not greatly altered, and still exceeds unity, but σ̂ is somewhat
smaller, allowing a 95% confidence around the line of about 13% of CONS, which re-
mains too large for the model to be useful.
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Figure 2.3 Goodness-of-fit graphs for extended model of CONS

The partial r2 for INC has risen relative to the simpler regression despite adding
INFLAT: in fact INC only has a correlation of −0.11 with INFLAT. Nevertheless, some
of the explanation of CONS is being spread across the two regressor variables although
more is being explained in total. Replot the graphical output, this time marking the
options for Actual and fitted values, Cross plot of actual and fitted, Residuals (scaled),
and finally, Residual density and Histogram. The graphs now appear as in Figure 2.3.

The improvement in the fit over Figure 2.1 should be clear. The new plot is the
histogram with an interpolation of the underlying density. This lets us see the extent to
which the residuals are symmetric around zero, or have outliers etc.; more generally, it
suggests the form of the density. It is drawn together with the normal density (standard-
ized, because the standardized residuals were used in the histogram and density).

2.7 Formal tests

Econometricians have constructed formal tests of such hypotheses as serial correlation
or normality, and these are easily implemented in PcGive. A table of some of these tests
is printed by default, starting with the normality test. To repeat this test for normality of
the errors, select the Test... command from the Test menu and the Test dialog appears.
Mark Normality as shown below, and accept.
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The output comprises the first four moments of the residuals and a χ2 test for these
being from a normal distribution:

Normality test for residuals
Observations 159
Mean 0.00000
Std.Devn. 3.2358
Skewness -0.32415
Excess Kurtosis -0.083166
Minimum -9.0491
Maximum 8.6025
Median 0.49483
Madn 3.3404
Asymptotic test: Chi^2(2) = 2.8303 [0.2429]
Normality test: Chi^2(2) = 3.2519 [0.1967]

Note that the mean of the residuals is zero by construction when an intercept is in-
cluded, and the standard deviation is the equation standard error (but uses the wrong
degrees of freedom, as it divides by n, rather than n− k). The skewness statistic mea-
sures the deviation from symmetry, and the excess kurtosis measures how ‘fat’ the tails
of the distribution are: fat tails mean that outliers or extreme values are more common
than in a normal distribution. Finally, the largest and smallest values are reported. Here,
the normality χ2 test does not reject: the probability of such a value or larger is 0.1967.

The data that are used here are time-series data, so we would really wish to include
a test for the temperal assumptions as well. Further discussion of testing will appear in
later chapters.

2.8 Storing components in the database

Occasionally it can be useful to store the residuals or other model components in the
OxMetrics database for further analysis. Select Test/Store in Database and mark Resid-

uals:
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Accept, and confirm the new variable name in OxMetrics. Now the variable is stored
in the data.in7 database. This is held in memory by OxMetrics, and not committed
to disk until you save it from inside OxMetrics (to keep this tutorial dataset clean, you
may prefer not to save the modified version).

Bring the database in focus (remaining in OxMetrics), and select View/Summary

statistics to confirm that the mean of the residuals variable is zero (well, not exactly:
numerical computations on a computer are usually accurate but never exact), and the
standard deviation (dividing by n) is 3.2358.

This concludes the first tutorial on regression estimation. We now move on to de-
scriptive statistics, and then to formulating and estimating dynamic models. The me-
chanics of the program remain the same, although the level of technique needed is
higher. Chapter 13 describes the analysis of linear dynamic models, with the objective
of learning the econometrics. Chapter 4 shows how to do it in PcGive.



Chapter 3

Tutorial on Descriptive Statistics and
Unit Roots

The previous tutorial introduced the econometrics of PcGive for a simple bivariate re-
gression, and explained the mechanics of operating PcGive. We have mastered the
skills to start the program, access menus and operate dialogs, load, save and transform
data, use graphics, including saving and printing and estimate simple regression mod-
els. And remember, there is always help available if you get stuck: just press F1. Now
we’re ready to move to more substantial activities. Usually, a data analysis starts by ex-
ploring the data and transforming it to more interpretable forms. These activities are the
subject of this chapter. The OxMetrics book describes the ‘Calculator’ and ‘Algebra.’

If you’re not inside PcGive at the moment, restart and load the tutorial data set
data.in7/data.bn7 into OxMetrics.

Use the OxMetrics calculator to create DCONS as the first difference of CONS (in the
calculator, mark CONS in the database list box, then press the Diff button and accept lag
length one to get the expression diff(CONS,1) in the calculator display, finally press
the = button to accept DCONS). Fig. 3.1 shows how different CONS and DCONS appear
when graphed.
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Figure 3.1 Time-series plot of CONS and DCONS
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3.1 Descriptive data analysis

In OxMetrics, select Model from the Model menu (or click on the Model toolbar icon).
In the modelling dialog, select Other models as the category, and Descriptive Statistics

using PcGive for the model class:

Press the Formulate button to bring up the data selection dialog. This dialog is similar
to that discussed in the previous section. Select CONS and DCONS:

In the next dialog, select means, standard deviations and correlations as shown here (the
unit-root tests are described in §3.3):
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Press Next, and Next again in the next dialog to accept the maximum sample size:

First listed in the output are the means and standard deviations, followed by the
correlation matrix:

Means, standard deviations and correlations
The dataset is: .\OxMetrics9\data\data.oxdata
The sample is: 1953(2) - 1992(3) (158 observations and 2 variables)
Means

CONS DCONS
875.85 -0.21341

Standard deviations (using T-1)
CONS DCONS

13.533 2.2101
Correlation matrix:

CONS DCONS
CONS 1.0000 0.098638
DCONS 0.098638 1.0000
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The sample standard deviation of a variable x is defined here as

x̄ =
1

T

T∑
t=1

xt, s =

√√√√ 1

T − 1

T∑
t=1

(xt − x̄)2.

The sample correlation between two variables x and y is:

rxy =

∑T
t=1 (xt − x̄) (yt − ȳ)√∑T

t=1 (xt − x̄)
2∑T

t=1 (yt − ȳ)
2
. (3.1)

CONS is hardly correlated with its difference, matching its high correlation with its own
one-lagged value (as we shall see later).

Now repeat, selecting Normality tests and descriptive statistics. The normality
test output consists of the first four moments, extrema and a test statistic. The output
is the same as §2.7, but applied to CONS and DCONS instead of the model residuals. Put
side-by-side:

Normality tests and descriptive statistics
The dataset is: .\OxMetrics9\data\data.oxdata
The sample is: 1953(2) - 1992(3) (158 observations and 2 variables)

Normality test for CONS DCONS
Observations 158 158
Mean 875.85 -0.21341
Std.Devn. 13.490 2.2031
Skewness -0.17195 -0.11208
Excess Kurtosis -1.6251 -0.55302
Minimum 853.50 -5.4897
Maximum 896.83 4.7393
Median 880.87 -0.21457
Madn 16.323 2.3718
Asymptotic test: Chi^2(2)=18.165 [0.0001]** 2.3442 [0.3097]
Normality test: Chi^2(2)=52.808 [0.0000]** 2.2958 [0.3173]

For a standard normal distribution (denoted by N(0, 1)) the theoretical numbers
would be:

mean 0 skewness 0

standard deviation 1 excess kurtosis 0

median 0 madn 1

Note the difference between the standard deviation of CONS under the normality test
and under correlations. This can be explained by:

σ̃ =

√√√√ 1

T

T∑
t=1

(xt − x̄)2 versus s =

√√√√ 1

T − 1

T∑
t=1

(xt − x̄)2.

The normality test reports the former:

13.490×
√

158

157
= 13.533.
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The normality test statistic is a function of the skewness and excess kurtosis. The
value of the test for CONS is 52.81. The probability of getting a number at least as large
if CONS would really have a normal distribution is given between the square brackets.
It is zero (not exactly, but so close to zero that we need not bother how close). The
two stars indicate that the test is significant at the 1% level, in other words it tells us
that 0% (the p-value) < 1%. It is extremely unlikely that CONS was generated by a
normal distribution. DCONS is another picture, as we can see in Fig. 3.2: its shape is not
significantly different from an N(−0.21, (2.2)2) distribution.
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Figure 3.2 Histogram and estimated density plot of CONS and DCONS

3.2 Autoregressive distributed lag
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Figure 3.3 Sample autocorrelation function of CONS and DCONS

Figure 3.3 shows the sample autocorrelation function (ACF) of CONS and DCONS.
CONS is highly correlated with its own lags, but not much autocorrelation is present
in DCONS, the distribution of which resembled an independent normal distribution in
Fig. 3.2b. Both graphs in Fig. 3.3 indicate approximate significance under the assump-
tion that the data constitutes an independent sample from the normal distribution as
absolute values in excess of:

2

T 1/2
=

2√
159
≈ 0.16

for the first graph (the second has T = 158, because one observation is lost when taking
the first difference).
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From this, we could entertain the hypothesis that CONS is appropriately described
by a first-order autoregressive process, denoted by AR(1). In mathematical form:

yt = α+ βyt−1 + ϵt, t = 1, . . . , T. (3.2)

The coefficient α is the intercept. If β were zero, yt would be perturbed by a random
disturbance around a constant. When β = 1, then ∆yt is random. Assumptions about
the error term are that it has mean 0 and variance which is constant over time:

E [ϵt] = 0, V [ϵt] = E [ϵt − E [ϵt]]
2
= E

[
ϵ2t
]
= σ2.

Autoregressions are a subset of autoregressive-distributed lag (ADL) models, and
are easily estimated in PcGive using the techniques of the previous chapter. The only
difference is that we need to estimate a dynamic model. Therefore, select the Models for

time-series data/Single-equation Dynamic Modelling menu to formulate a regression
of CONS on a Constant and CONS 1 (the first lag of CONS). The dialog is only slightly
different from before: a default lag length will be set (the initial default is one but can
be changed). After selecting one lag:

In the next screen, accept the default full sample period. The estimation results from
the AR(1) model are:
EQ( 1) Modelling CONS by OLS

The dataset is: .\OxMetrics9\data\data.oxdata
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The estimation sample is: 1953(2) - 1992(3)

Coefficient Std.Error t-value t-prob Part.R^2
CONS_1 0.989378 0.01308 75.6 0.0000 0.9734
Constant 9.09221 11.46 0.793 0.4289 0.0040

sigma 2.21251 RSS 763.648214
R^2 0.973440 F(1,156) = 5717 [0.000]**
Adj.R^2 0.973269 log-likelihood -348.658
no. of observations 158 no. of parameters 2
mean(CONS) 875.848 se(CONS) 13.5326

The output from simple regression was already discussed in §2.3.1. The col-
umn marked coefficients gives β̂ and α̂. Next to that are their estimated stan-
dard errors, from which we could derive a rough 95% confidence interval, for β̂:
(0.9894± 2× 0.01308). The number 2 derives from the assumption that β̂ has a
student-t distribution with T − k = 158 − 2 = 156 degrees of freedom. This, in turn,
we know to be quite close to a standard normal distribution. Soon we shall see that this
assumption might not be valid; if so, the confidence interval will change. Alternatively,
we could use the t-value of β̂:

tβ =
β̂

SE
(
β̂
) =

0.9894

0.01308
= 75.6

to test the hypothesis that β is zero (expressed as H0 : β = 0). Under the current
assumptions we reject the hypothesis if tβ > 2 or tβ < −2 (again, using a 95% confi-
dence interval, in other words, a 5% significance level). The observed value of 75.6 is
very much larger than 2, making it highly unlikely that β is zero.

3.3 Unit-root tests

It is more interesting to test whether β equals one, H0 : β − 1 = 0. The t-value is
computed as

0.9894− 1

0.01308
= −0.8.

It is convenient to rewrite (3.2) by subtracting yt−1 from both sides:

yt − yt−1 = α+ βyt−1 − yt−1 + ϵt,

or:
∆yt = α+ (β − 1) yt−1 + ϵt. (3.3)

With DCONS in the database, we can check whether (3.3) is identical to (3.2). Refor-
mulate the model of the previous section as a regression of DCONS on a Constant and
CONS 1. The result should be:
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EQ( 2) Modelling DCONS by OLS
Coefficient Std.Error t-value t-prob Part.R^2

Constant 9.09221 11.46 0.793 0.4289 0.0040
CONS_1 -0.0106221 0.01308 -0.812 0.4181 0.0042

sigma 2.21251 RSS 763.648214
R^2 0.00420671 F(1,156) = 0.659 [0.418]
Adj.R^2 -0.00217658 log-likelihood -348.658
no. of observations 158 no. of parameters 2
mean(DCONS) -0.213409 se(DCONS) 2.2101

Comparing RSS shows that the outcomes are identical. What has changed dra-
matically are R2 and the F-statistic, corresponding to switching between yt and ∆yt as
dependent variables.

The hypothesis H0 : β = 1 is called the unit-root hypothesis (which implies that
yt is non-stationary). It is of special interest, because under the null hypothesis, it is
incorrect to use the student-t distribution. Moreover, many economic variables appear
to have a unit root. If CONS has one unit root, we say that CONS is integrated of order
1, denoted I(1); this corresponds to saying that DCONS is I(0). The correct distribution
to use for the t-value is the ‘Dickey–Fuller’ distribution. Unfortunately, the precise
distributional form depends on the presence or absence of an intercept or trend. (If the
distribution of a test depends on other (‘nuisance’) parameters, it is called ‘not similar’.)

To obtain correct critical values, return to Descriptive Statistics using PcGive to re-
estimate (3.3). Select CONS, in the formulation dialog, press OK and check Unit-root

tests in the next dialog. Keep the default of just using a constant term, but switch off
the Report summary table only option, and set the lag length for differences to zero:

Press Next to accept. (Note that, if necessary, the sample is automatically adjusted for
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the required differences and lags.) The current estimation uses the full sample.
Unit-root tests
The dataset is: .\OxMetrics9\data\data.oxdata
The sample is: 1953(2) - 1992(3) (159 observations and 1 variables)

Augmented Dickey-Fuller test for CONS; regression of DCONS on:

Coefficient Std.Error t-value
CONS_1 -0.010622 0.013085 -0.81180
Constant 9.0922 11.464 0.79309

sigma = 2.21251 DW = 1.598 DW-CONS = 0.02639 ADF-CONS = -0.8118
Critical values used in ADF test: 5%=-2.88, 1%=-3.473
RSS = 763.6482142 for 2 variables and 158 observations

DW is the Durbin-Watson statistic of the OLS regression residuals, whereas DW-
CONS is the Durbin-Watson of CONS (see Chapter 17). ADF-CONS is the t-statistic
we computed earlier. The 5% critical value for the Dickey–Fuller test is reported as
−2.88. The negative number is given, because the interesting alternative hypothesis is
that β̂ < 1; β̂ > 1 corresponds to an exploding process, which we tend not to see in
economic variables. The critical values are based on response surfaces in MacKinnon
(1991); 5% significance is marked by *, 1% by **. Here we can not reject the hypothesis
that β − 1 = 0: CONS appears to have a unit root (is I(1)). As with all statistical tests,
some caution is required. It can be seen in the time-series graph of CONS in Fig. 3.1a that
it has a break around 1975, and it has been found that a break can cause I(0) variables
to appear I(1) in DF tests.

The augmented Dickey–Fuller (ADF) test derives from the DF test by adding lagged
differences, for example, for the ADF(1) test:

∆yt = α+ (β − 1) yt−1 + γ∆yt−1 + ϵt,

or more generally for the ADF(s):

∆yt = α+ (β − 1) yt−1 +

s∑
i=1

γi∆yt−i + ϵt.

ADF(0) corresponds to the DF test. The purpose of these additional lags is to ‘whiten’
the residuals, reducing their autocorrelation.

Tip The null hypothesis is that of a unit root. A significant test statistic would reject
that hypothesis and suggest stationarity.

To facilitate the computation of ADF tests, and the decision about the lag length, Pc-
Give can be instructed to print a summary table of ADF tests. Select Model/Descriptive
Statistics, select CONS and INFLAT. Then select Unit-root tests. with summary ta-
ble only and lag legth 4 for differences. The output consists of the sequence of
ADF(4). . . ADF(0) tests:
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CONS: ADF tests (T=154, Constant; 5%=-2.88 1%=-3.47)
D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob
4 -1.466 0.98058 2.157 1.268 0.2068 1.576
3 -1.308 0.98278 2.161 1.450 0.1492 1.573 0.2068
2 -1.135 0.98512 2.169 1.712 0.0889 1.574 0.1594
1 -0.9463 0.98759 2.183 2.491 0.0138 1.581 0.0874
0 -0.6500 0.99139 2.220 1.608 0.0135

INFLAT: ADF tests (T=154, Constant; 5%=-2.88 1%=-3.47)
D-lag t-adf beta Y_1 sigma t-DY_lag t-prob AIC F-prob
4 -5.095** 0.85178 0.3534 0.5232 0.6016 -2.042
3 -5.340** 0.85784 0.3526 1.078 0.2829 -2.053 0.6016
2 -5.354** 0.86932 0.3527 1.090 0.2774 -2.058 0.4910
1 -5.363** 0.87997 0.3530 11.40 0.0000 -2.063 0.4577
0 -2.398 0.92835 0.4799 -1.456 0.0000

The first column is the number of lagged differences, so the first line gives the
results for the ADF(4) test. The second column is the t-value, which is the ADF test
statistic, the third column is the coefficient on yt−1 (the coefficient used in t-adf), the
next column gives the equation standard error. The next two columns, t-DY lag and
t-prob, give the t-value of the longest lag (of γs, s = 4, 3, 2, 1), followed by the p-
value of that lag. The suggested strategy is to select the highest s with a significant
last γs (the distribution of γ̂s is the conventional student-t distribution). So for both
INFLAT and CONS we use an ADF(1) test. The only place where it makes a difference
is in using ADF(1) or ADF(0) for INFLAT. Using the lag criterion we conclude that
INFLAT is stationary, so if we did not check for the importance of lagged values of
INFLAT, we might mistakenly think that it is non-stationary. Note that all tests used
the same sample period, which explains why the table lists ADF-CONS(0)= −0.65,
while we previously found −0.81. We labelled AIC reports the Akaike information
criterion: the log-likelihood with a penalty for the number of estimated parameters.
The last column, labelled F-prob, is the p-value of the F-tests on all lags dropped up to
that point.

We have avoided the issue of including a constant, or a constant and trend. The
implications are as follows:

β = 1 β < 1

∆yt = (β − 1) yt−1 + ϵt zero growth mean zero
∆yt = α+ (β − 1) yt−1 + ϵt trend in yt non-zero mean
∆yt = α+ (β − 1) yt−1 + µt+ ϵt quadratic trend in yt trend in yt

Few variables have quadratic trends, but it is often advisable to include t in case the
variable is stationary around a linear trend. Equally, include an intercept unless it is
clear that the variable has a zero mean. Technically, including a polynomial in time of
order n (for example, having α and µt corresponds to n = 1) makes the test similar
despite the presence of the nuisance parameters of a polynomial of order n− 1.

Some variables could be thought to be I(2). Then you could start with checking
whether the second differences are I(0). If so, move on to the first differences.

That concludes the data description. The PcGive unit-root test and issues of cointe-
gration are discussed in §13.6.



Chapter 4

Tutorial on Dynamic Modelling

Dynamic modelling normally consists of a cycle of three steps: formulation or re-
formulation, estimation and evaluation. The modelling process takes place within the
Model and the Test menus described in the previous tutorials, but we reproduce several
dialogs here for convenience. This tutorial will guide you through a simple model se-
quence based on the artificial data set. Hopefully you will agree at the end that PcGive
combines sophistication with great simplicity.

Before we start, a brief digression on lags is called for. PcGive names lagged vari-
ables by appending an underscore and then the lag length. So CONS 1 is CONS one
period lagged. PcGive uses this naming scheme to keep track of the lag length. Sup-
pose the database holds both a CONS and a CONS 1 variable. Then, when formulating a
model involving the first lag of CONS, PcGive will use CONS, to create that lag. So the
database CONS 1 variable is never used. When CONS 1 is the only CONS variable in the
database, PcGive will start using it.

4.1 Model formulation

Load data.in7 in OxMetrics, if you are starting this tutorial afresh. Then click on
the Model icon (or use Model on the Model menu or Alt+y). Change the Category to
Models for time series data and the Model class to Single-equation dynamic modelling

using PcGive:

41
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Click on Formulate to initiate the Formulate a Model dialog, discussed extensively
in Chapter 2. The first model to formulate is CONS on a Constant, CONS lagged, INC,
INC lagged and INFLAT, as shown here:
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There are various ways of formulating such a model, including:

• Assuming that the lag selection is set from lag 0 to 1, double click on CONS, INC,
INFLAT respectively. Then select INFLAT 1 in the Model list box, and delete (using
the Delete key, double clicking, or pressing the >> button).

• After adding CONS and INC with lags 0 and 1, set the lag length to lag 0 to 0, and
add INFLAT.

• Using the mouse, select the CONS, INC, INFLAT variables. Note that a single click
only selects one variable. To select a range, hold the Ctrl key down, and click
on the three variables. Finally, you could click on CONS, then hold the Shift key
down and click on INFLAT. With the three variables selected, press <<. Then delete
INFLAT 1.

There are three ways to use the lag settings:

• No lags to add without lags;
• With lag to add only the specified lag;
• Lags 0 to in order to set a lag range.

Note that a Constant is automatically added, but can be deleted if the scale of the
variables lets a regression through the origin have meaning. Neither the Constant nor
the Trend will be offered for lagging (lagging these would create redundant variables).
Seasonals are not used here, but you could add them and delete them if you wish. In
that case, you’ll see that PcGive automatically adds the correct number of seasonals:
three here as the data are quarterly. This takes the constant term into account; without
the constant, four seasonals would have been added. Seasonal is always unity in the
first period (first quarter in this case). So Seasonal 1 is one in the second quarter,
etc. Remove the seasonals from the model.

4.2 Model estimation

Estimation methods are discussed in Chapter 13; Chapter 18 reviews the statistical out-
put reported following estimation. Here we only need OLS; examples of the other
estimation methods are given in the next chapter. Pressing Next after model formula-
tion brings up the model settings dialog. Unless we wish to use Autometrics, there are
no options here. Pressing Next in the Model Settings dialog takes us directly to the
Estimation dialog where the estimation sample period can be set.

The dialog also allows you to retain some data for static (one-step ahead) forecast-
ing. The sample period can be adjusted, but the one shown is always admissible and
will either be the maximum available or the one used in the previous model. Please
verify that the sample size on your screen corresponds to the one shown here, the full
sample: 1953 (2) – 1992 (3). Retain eight observations for parameter constancy using
the Less forecasts text entry field (the default is none, and the maximum is determined
by the sample size):
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Tip It is easy to refit models to subsamples and hence conduct tests of constancy based
on the residual sums of squares. The recursive estimation option allows testing over
the entire set of subsamples.

4.3 Model output

4.3.1 Equation estimates

The estimated equation has the form:

yt = x′
tβ + ϵt, t = 1, . . . , T,

where xt contains a ‘1’ for the intercept, yt−1 for the lagged dependent variable, as
well as the other regressors. Assumptions about the error term are that it has mean 0
and variance which is constant over time:

E [ϵt] = 0, V [ϵt] = E [ϵt − E [ϵt]]
2
= E

[
ϵ2t
]
= σ2.

We can write the estimated autoregressive-distributed lag (ADL) model in more detail
as:

CONSt = a1CONSt−1 + c+ b0INCt + b1INCt−1 + γINFLATt + ϵt. (4.1)
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The estimation results are written to the OxMetrics Results window where further
editing is easy. We assume that you have the default options setting, Section 4.9 dis-
cusses the options. The reported results include coefficient estimates; standard errors;
t-values; the squared partial correlation of every regressor with the dependent variable;
the squared multiple correlation coefficient (denoted R2); an F-test on R2 equalling
zero; the equation standard error (σ); the Residual Sum of Squares (RSS); these were
all introduced in §2.3.1.
EQ( 1) Modelling CONS by OLS

The dataset is: .\OxMetrics9\data\data.oxdata
The estimation sample is: 1953(2) - 1990(3)

Coefficient Std.Error t-value t-prob Part.R^2
CONS_1 0.809091 0.02548 31.8 0.0000 0.8743
Constant -18.5178 8.726 -2.12 0.0355 0.0301
INC 0.506687 0.02882 17.6 0.0000 0.6807
INC_1 -0.296493 0.03560 -8.33 0.0000 0.3236
INFLAT -0.992567 0.08618 -11.5 0.0000 0.4777

sigma 1.07598 RSS 167.872396
R^2 0.993693 F(4,145) = 5712 [0.000]**
Adj.R^2 0.993519 log-likelihood -221.283
no. of observations 150 no. of parameters 5
mean(CONS) 876.685 se(CONS) 13.3658

AR 1-5 test: F(5,140) = 0.90705 [0.4784]
ARCH 1-4 test: F(4,142) = 0.57719 [0.6796]
Normality test: Chi^2(2) = 0.67529 [0.7134]
Hetero test: F(8,141) = 1.0543 [0.3988]
Hetero-X test: F(14,135) = 0.97457 [0.4826]
RESET23 test: F(2,143) = 1.0115 [0.3663]

1-step (ex post) forecast analysis 1990(4) - 1992(3)
Parameter constancy forecast tests:
Forecast Chi^2(8) = 9.3241 [0.3157]
Chow F(8,145) = 1.1500 [0.3337]
CUSUM t(7) = -0.9719 [0.3635] (zero forecast innovation mean)

The sample period was automatically adjusted for the lags created on CONS and
INC. The figure in [·] after the F (·) value is the probability of obtaining that value from
a central F-distribution with the degrees of freedom shown. Should it be desired, the
output can also be printed in LATEX or equation format, as shown in §4.9.

4.3.2 Analysis of 1-step forecast statistics

The static forecast tests are a Chow test and a forecast Chi2 (8) which is an index of
numerical parameter constancy. For H forecasts, values exceeding 2H imply poor ex
ante accuracy. The third test statistic reported is for the mean of the innovations being
zero over the forecast period. This involves the cumulative sum (CUSUM) of the 1-step
ahead (recursive) residuals, and has a t-distribution.

So none of these these test reject and do not detect any non-constancy for the fore-
cast period. Later, we will graph the outcomes, forecasts and the error bars for ±2
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standard errors of the 1-step forecasts.
To see the full results, select Test/Further Output, and select Static (1-step) fore-

casts:

1-step forecasts for CONS (SE with parameter uncertainty)
Horizon Forecast SE Actual Error t-value -2SE +2SE
1990-4 862.235 1.097 861.484 -0.751532 -0.685 860.04 864.43
1991-1 862.136 1.090 864.444 2.30801 2.117 859.96 864.32
1991-2 863.237 1.085 862.750 -0.487490 -0.449 861.07 865.41
1991-3 860.146 1.091 859.413 -0.732399 -0.671 857.96 862.33
1991-4 862.243 1.106 860.480 -1.76260 -1.594 860.03 864.46
1992-1 860.796 1.092 860.002 -0.793439 -0.727 858.61 862.98
1992-2 856.477 1.113 855.908 -0.568310 -0.511 854.25 858.70
1992-3 856.995 1.089 856.731 -0.264312 -0.243 854.82 859.17
mean(Error) = -0.38151 RMSE = 1.1616
SD(Error) = 1.0972 MAPE = 0.11129 MAAPE = 0.11129

The RMSE, MAPE, and MAAPE are discussed in Chapter 5.

4.4 Graphical analysis

The next major step is to evaluate the estimated model. Select the Graphic Analysis

dialog from the Test menu (or press the toolbar button), and mark the first six items:
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The dialog lets you plot or cross-plot the actual and fitted values for the whole
sample, the residuals scaled by σ, so that values outside the range [−2,+2] suggest
outlier problems, the forecasts, and some graphical diagnostic information about the
residuals (their spectrum, correlogram, histogram, density and cumulative distribution).
The forecast period start is marked by a vertical line (see Figure 4.1). Notice the good
fit: the earlier high R2, and good Chow test are consistent with this. As before, any
graphs can be saved for later recall, editing and printing.
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Figure 4.1 Graphical evaluation of CONS model
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Accept the dialog, and the graphs appear in the PcGive Graphics window in Ox-
Metrics, as in Figure 4.1. There are two new graphs. The first is the correlogram, which
extends the idea behind the DW test to plot the correlations between successive lagged
residuals (that is, the correlation of ϵ̂t with ϵ̂t−1, then with ϵ̂t−2, ϵ̂t−3 and so on up to
ϵ̂t−12). A random (independent) residual would have most such correlations close to
zero: visually, the dependence between successive residuals is small. The second plots
the forecasts which we printed earlier, with the error bands changed to error fans.

Tip If you wish to use a non-default sample size, adjust the area in OxMetrics.

4.5 Recursive estimation

Our next topic is recursive estimation: the logic is simply to repeatedly drop the last
observation and re-estimate to see if the results remain as expected with fewer observa-
tions. So the sample shrinks T, T − 1, T − 2, ... until it gets too small for meaningful
results. The main output will be graphs of coefficients, σ̂ etc. over the changing sample
size. This is a powerful way to study parameter constancy (especially in its absence!).
Chapter 14 explains the algebra of recursive estimation, although these days there is less
need for efficient updating algorithms. We refer to recursively applied OLS as RLS.

We had already noted that the model appeared constant over the forecast period.
Interestingly, the instability statistics (based on Hansen, 1992) do not detect any non-
constancy in the mean parameters either: select Test/Test and mark Instability tests for
the reported outcomes (significance would be marked by one or two stars, so there may
be some instability in the variance):

Instability tests:
variance 0.76196*
joint 1.3921
Individual instability tests:
CONS_1 0.080069
INC 0.080234
INC_1 0.079526
INFLAT 0.074510
Constant 0.079094

The Recursive Graphics dialog is activated from the toolbar (or the Test menu).

The right column has all the variables to be plotted in beta coefficients and beta
t-values. Select the statistics which are to be plotted: beta coefficients, beta t-values,
1-step residuals, and all three Chow tests. To reduce the number of graphs, we have
excluded the coefficient on INFLAT:
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First, the graph of the coefficient of CONS 1 over the sample in Figure 4.2 shows that
after 1978, β̂t lies almost outside of the previous confidence interval which an inves-
tigator pre-1974 would have calculated as the basis for forecasting. Other coefficients
are also non-constant. Further, the 1-step residuals show one outlier around 1987.
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Figure 4.2 Recursive least squares graphical constancy statistics

The 1-step residuals are
ũt = yt − x′

tβ̂t

and they are plotted with ±2σ̂t shown on either side of zero. Thus ũt which are outside
of the error bars are either outliers or are associated with changes in σ̂. The full sample
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residuals are:

ût = yt − x′
tβ̂T

where β̂T is the full-sample OLS estimate. Graphic analysis plots these, scaled by the
full sample σ̂T .

Further summary graphs are the Chow tests, which are all scaled by their 1% critical
value (which becomes the line at unity). The 1-step Chow tests evaluate the one step
ahead forecasts, whereas the forecast (or Nup) tests evaluate the forecasts at each point
relative to the estimates at the start of the recursive plots. So the forecast Chow tests
have an expanding forecast horizon. Finally, in the Ndown, or breakpoint, Chow test
each point is the value of the Chow F-test for that date against the final period, here
1990(3), again scaled by its 1% critical value, so the forecast horizon N is decreasing
from left to right (hence the name Ndn tests). Figure 4.2 illustrates: the critical value
can be set at any desired probability level. The breakpoint Chow test shows a failure
around 1974 (the oil crisis ...).

Peruse other options as you wish: see how the standardized innovations often high-
light the outliers, or how the residual sums of squares confirm that a break occurred
in 1974. Any of these graphs can be edited and printed, or saved for later recall and
printing.

Next, select the Graphic analysis dialog and look at the full sample residuals:

ût = yt − x′
tβ̂T

where β̂T is the usual full-sample OLS estimate. The full-sample estimates somewhat
smooth the outliers evident in the recursive figures, so now the largest is not much more
than 3.5 standard errors (partly because σ̂ increased by about 50% over the sample).

Note that recursive estimation can also be used to check the constancy of pre-tests
such as (Augmented) Dickey–Fuller tests for the order of integration of a time series,
and the recursive graphs may help to discriminate between genuine unit roots and au-
toregressive coefficients driven towards unity by a failure to model a regime shift.

4.6 Dynamic analysis

Next, activate Dynamic Analysis from the Test menu. Select Static long-run solution,
Lag structure analysis, Graph lag weights, and both Graph normalized lag weights and
Graph cumulative normalized lag weights, as shown:
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The dynamic analysis commences with the long-run solution. Chapter 13 provides
an explanation. The solved long-run model (or static solution) is calculated, together
with the relevant standard errors as follows. Write the dynamic equation as

a (L) yt = b (L)xt + ϵt,

where L is the lag operator so that Lxt = xt−1 and b(L) =
∑n

i=0 biL
i is a scalar

polynomial in L of order n, the longest lag length. Similarly, a(L) =
∑n

i=0 aiL
i, with

a0 = −1. With a(1) =
∑n

i=0 ai (that is, a(L) evaluated at L = 1), then if a(1) ̸= 0

the long run is:

y =
b (1)

a (1)
x = Kx.

Under stationarity (or cointegration inducing a stationary linear relation), standard er-
rors for derived coefficients like K can be calculated from those of a (·) and b (·). Here
the long-run coefficients are well determined, and the null that they are all zero (exclud-
ing the constant term) is rejected.

Solved static long run equation for CONS
Coefficient Std.Error t-value t-prob

Constant -96.9979 40.68 -2.38 0.018
INC 1.10102 0.04534 24.3 0.000
INFLAT -5.19917 0.5558 -9.35 0.000
Long-run sigma = 5.63611

ECM = CONS + 96.9979 - 1.10102*INC + 5.19917*INFLAT;
WALD test: Chi^2(2) = 824.782 [0.0000] **

Next, the lag polynomials are analyzed, listing the individual coefficients a0, a1,
etc. (normalized so that a0 = −1), followed by their sum a(1), b(1), etc. and their
standard errors (remember that the standard error of the sum is not simply the sum of
the standard errors!):

Analysis of lag structure, coefficients:
Lag 0 Lag 1 Sum SE(Sum)

CONS -1 0.809 -0.191 0.0255
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Constant -18.5 0 -18.5 8.73
INC 0.507 -0.296 0.21 0.0313
INFLAT -0.993 0 -0.993 0.0862

This is followed by the F-tests of the joint significance of each variable’s lag poly-
nomial:

Tests on the significance of each variable
Variable F-test Value [ Prob] Unit-root t-test
CONS F(1,145) = 1008.5 [0.0000]** -7.4931**
Constant F(1,145) = 4.503 [0.0355]*
INC F(2,145) = 155.67 [0.0000]** 6.7226
INFLAT F(1,145) = 132.64 [0.0000]** -11.517

Tests on the significance of each lag
Lag 1 F(2,145) = 617.11 [0.0000]**

The hypothesis that a(1) = 0 can be rejected, with a PcGive unit-root test value of
−7.49 (or (−1 + 0.809)/0.0255 from the previous output). The two stars mark sig-
nificance, suggesting cointegration between the variables in the model in levels (see
Banerjee, Dolado, Galbraith, and Hendry, 1993, or Johansen, 1995). Finally, tests on
the significance of each lag length are provided (here we deleted three columns with
zeros): The unit-root t-test (also called the PcGive unit-root test) does not in fact have
a t-distribution, but the marked significance (∗ for 5%, ∗∗ for 1%, dependent variable
only) is based on the correct critical values, see Banerjee, Dolado, and Mestre (1998).

Since we also chose to graph Lag weights, there are six new graphs in the Dynamics

graphics window.
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Figure 4.3 Lag weights from CONS model
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To improve the presentation, we have edited these as follows. First we change the
range of the horizontal axis in the first plot, and copy that to all areas:

Next we change the area layout from 3× 2 to 2× 3:

We also use Adjust all styles to set thicker lines, and change to fan charts, see Figure
4.3.
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4.7 Mis-specification tests
Test/Test Summary conducts a summary testing sequence on the residuals for a range
of null hypotheses of interest, including: autocorrelation, autoregressive conditional
heteroscedasticity (ARCH), the normality of the distribution of the residuals, het-
eroscedasticity, and functional form mis-specification. The output is:

AR 1-5 test: F(5,140) = 0.90705 [0.4784]
ARCH 1-4 test: F(4,142) = 0.57719 [0.6796]
Normality test: Chi^2(2) = 0.67529 [0.7134]
Hetero test: F(8,141) = 1.0543 [0.3988]
Hetero-X test: F(14,135) = 0.97457 [0.4826]
RESET23 test: F(2,143) = 1.0115 [0.3663]

Note how easy these tests are to calculate; and to see how informative they are about
the match of model and evidence, try computing them when any regressor is dropped
(why does dropping INC not lead to rejection?).

Tests can also be undertaken individually, or in different groups from that embodied
in the test summary. From the Test menu, select Test, which brings up the Test dialog:

Any or all available tests can be selected.
Tip The default values for the lag length of the AR and ARCH tests are based on the

data frequency and the sample size. Different lag lengths can be selected in the Test
dialog.
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The output is rather more extensive than with batch tests. For example, the error auto-
correlation test (or AR test) and ARCH test produce:

Error autocorrelation coefficients in auxiliary regression:
Lag Coefficient Std.Error

1 0.054381 0.0909
2 0.071683 0.08987
3 -0.088316 0.08768
4 0.12258 0.08856
5 -0.051648 0.0885

RSS = 162.605 sigma = 1.16146

Testing for error autocorrelation from lags 1 to 5
Chi^2(5) = 4.7067 [0.4527] and F-form F(5,140) = 0.90705 [0.4784]

ARCH coefficients:
Lag Coefficient Std.Error

1 -0.065174 0.08399
2 -0.077844 0.08388
3 0.063463 0.08394
4 0.034848 0.08416

RSS = 345.559 sigma = 1.55997

Testing for error ARCH from lags 1 to 4
ARCH 1-4 test: F(4,142) = 0.57719 [0.6796]

The DW -statistic (Durbin–Watson) is not printed by default. Instead, it is available
as the first entry on the Test dialog. But note that the assumptions needed to justify the
application of the DW test in economics are rarely satisfied.

Similarly, the normality test leads to the low-order moments being reported. The
density of the scaled residuals was shown in Figure 4.1 and revealed slight skewness
and somewhat fatter tails than the standard normal distribution. These mis-specification
test outcomes are satisfactory, consistent with the equation being a congruent model, so
we now consider some specification tests.

Note that you can use Test/Store to store residuals and fitted values from the regres-
sion in the OxMetrics database.

4.8 Specification tests

4.8.1 Exclusion, linear and general restrictions

First, we test whether a subset of the coefficients is zero. Choose Exclusion Restrictions

from the Test menu to test whether one or more coefficients are zero. At the dialog mark
INC and INC 1 and accept:
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Before looking at the subset test result, we shall also do a linear restrictions test
on homogeneity of CONS with respect to INC. This time, select Linear Restrictions. To
complete, edit the restrictions as follows:

This formulates one restriction. The last element is the r vector, specifying what
the restriction should add up to. In terms of (4.1) the restrictions are:

(1 0 1 1 0)


a1
c

b0
b1
γ

 = a1 + b0 + b1 = 1.

The results of the two tests are:

Test for excluding:
[0] = INC
[1] = INC_1
Subset F(2,145) = 155.67 [0.0000]**

Test for linear restrictions (Rb=r):
R matrix

CONS_1 Constant INC INC_1 INFLAT
1.0000 0.00000 1.0000 1.0000 0.00000

r vector
1.0000

LinRes F(1,145) = 4.0348 [0.0464]*
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One further way of implementing this test is in the form of general restrictions.
These are expressed as f(θ) = 0. Complete the dialog as follows, and accept:

The results of the last test is:

Test for general restrictions:
&0 + &2 + &3 - 1 = 0;
GenRes Chi^2(1) = 4.0348 [0.0446]*

The output of the homogeneity test shows slight evidence of rejection of long-run
homogeneity if conventional critical values are used. The previous exclusion test re-
veals strong rejection of the null.

Finally, we conduct an omitted variables test for INFLAT 1. At the dialog, mark
INFLAT, and set the lag length to one:

Omitted variables test: F(1,144) = 1.44885 [0.2307]
Added variables: INFLAT_1

The additional lag is indeed irrelevant.
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4.8.2 Test for common factors

Testing for common factors (COMFAC; also see Chapter 13) is part of Dynamic anal-

ysis. It is also a specification test, motivating its inclusion here. When the dynamic
equation is:

a (L) yt = b (L)xt + c (L) zt + ϵt,

COMFAC involves testing whether a(L) = a(1 − ρL) when b(L) = b(1 − ρL) and
c(L) = c(1 − ρL) so that (1 − ρL) is the factor of the lag polynomials in common.
COMFAC is discussed by Hendry and Mizon (1978).

To select COMFAC tests, the minimum lag length must be unity for all non-
redundant variables (variables that are redundant when lagged can occur without lags:
PcGive notices the Constant and Trend if such terms occur). First, we must revise the
model to have one lag on INFLAT: select the Model Formulation dialog, mark INFLAT

in the database, and add it to the model using a lag length of one. PcGive notices that
current INFLAT is already in the model and doesn’t add it a second time. Estimate over
the previously selected sample (the full sample, with 8 forecasts). Now select Dynamic

analysis, and mark Test for common factors. Since the lag polynomials are first-order,
only the Wald test of one common-factor restriction is presented following the roots of
the lag polynomials. Here the restriction is rejected so the dynamics do not have an
autoregressive error representation, matching the very different roots of the lag polyno-
mials. The output is:

COMFAC Wald test table, COMFAC F(2,144) = 51.3999 [0.0000] **
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Order Cumulative tests Incremental tests
1 Chi^2(2) = 102.8 [0.0000]** Chi^2(2) = 102.8 [0.0000]**

The remainder of this chapter uses the model without lagged INFLAT, so re-estimate
the previous model (still with 8 static forecasts).

4.9 Options

The Options entry on the OxMetrics Model dialog allow you to control the settings
for iterative maximization (which we have not used yet), and select additional output
options.

The options related to maximization appear in the top part of the dialog:
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Increasing the amount of iteration output could be useful if you wish to find out why
a iterative maximization goes wrong.

Clicking on Additional reporting in the Options dialog expands the remainder of
the dialog:

The Test Summary is switched on by default (and can be switched off here if you
do not wish that), all the others are switched off. Marking any of these items will result
in the output automatically appearing after estimation. All Options settings are saved
between runs of PcGive. Note however, that all these items are also available on demand
from the Test menu.

4.10 Further Output

Other output formats may prove more convenient for direct inclusion in final reports.
To make PcGive write the output in equation format, for example, activate the Further

Output, (on the Test menu) and mark equation format. This prints:

CONS = 0.8091*CONS_1 - 18.52 + 0.5067*INC - 0.2965*INC_1 - 0.9926*INFLAT
(SE) (0.0255) (8.73) (0.0288) (0.0356) (0.0862)
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One objective of dynamic modelling is to obtain forecasts, and we consider this in
the next chapter.



Chapter 5

Tutorial on Forecasting

Economic forecasting is challenging—and always has been, as Castle, Clements, and
Hendry (2019) argue in their intoduction to forecasting. No clear consensus as to the
‘best’ or even ‘good’ approaches has arisen in the literature. Clements and Hendry
(2001) suggest this lack of agreement is the result of intermittent distributional shifts
that affect alternative formulations in different ways. Causes of such breaks can be fi-
nancial crises, trade wars, conflicts, policy changes, and pandemics etc. Consequently,
nonstationarities can arise from both unit roots and structural breaks in mean or vari-
ance.

In practice, it can be difficult to beat a simple autoregressive model when it comes
to forecasting. Although after we have observed a break (forecasting a break before it
happens is an even greater challenge), we may prefer to use a forecasting device that is
relatively robust to breaks, even if it increases the uncertainty of the forecasts.

Despite these challenges, forecasts are needed to guide decision making—modern
accounting rules even imply the need for forecasts, while ignoring their uncertainty.
This tutorial chapter introduces the facilities of PcGive to help making forecasts, and,
just as importantly, interval forecasts to measure their uncertainty.

5.1 Static versus dynamic forecasts
The difference between static and dynamic forecasts is most easily demonstrated
in a simple autoregressive model of order 1, AR(1). Using the tutorial dataset
data.oxdata, estimate an AR(1) for CONS including an intercept, and holding back
eight forecasts.

Activate the Forecast dialog, and select the default of 8 dynamic forecasts:

62
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The forecasts appear in the Forecasts window. Rename this window so that we can add
to this graph later. Next, plot the 1-step forecasts:

In the simple autoregressive model without intercept,yt = βyt−1 + ϵt, writing ŷt
for forecasted values, and assuming that T + 1 is the first forecast period:

Forecast horizon Static Forecast Dynamic Forecast
T + 1 ŷT+1 = β̂yT ŷT+1 = β̂yT
T + 2 ŷT+2 = β̂yT+1 ŷT+2 = β̂ŷT+1 = β̂2yT
T + 3 ŷT+3 = β̂yT+2 ŷT+3 = β̂ŷT+2 = β̂3yT

The first forecast is the same, but thereafter the forecasts differ, as Figure 5.1 shows.
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Figure 5.1 Static and dynamic forecasts from AR(1) of CONS

5.2 Forecast evaluation
We return to the model of the previous chapter: CONS on its lag with a constant, INC
and its lag, and INFLAT Eight observations were kept for static (1-step) forecasts, and
these were listed in §4.3.2 and graphed in Fig. 4.1d.

To replicate the results of §4.3.2, re-estimate the model, then activate Test/Forecast
(or click on the forecast icon on the toolbar). In the subsequent dialog, select the h-step
forecasts radio button (keeping h = 1). Also set Forecast standard errors to use With

parameter uncertainty.
The default for forecast standard errors in the dialog is based on equation standard

error only, reported as sigma in the estimation output. In that case, the listed SE would
be 1.076 for all 1-step forecasts: generally the two forms of standard error are relatively
close and converge asymptotically (because the parameter uncertainty vanishes).

The output appears in the in Forecasts graphics window, as well as the OxMetrics
results window. The latter matches the output listed in §4.3.2; for the summary mea-
sures:

mean(Error) = -0.38151 RMSE = 1.1616
SD(Error) = 1.0972 MAPE = 0.11129 MAAPE = 0.11129

The numbers are as before, and the same summary statistics are reported. The first
is the Root Mean Square Error:

RMSE =

[
1

H

H∑
t=1

(yt − ft)2
]1/2

,

where the forecast horizon is H (8 here), yt the actual values, and ft the forecasts. The
second statistic is the Mean Absolute Percentage Error:

MAPE =
100

H

H∑
t=1

∣∣∣∣yt − ftyt

∣∣∣∣ .
All are measures of forecast accuracy, see, e.g. Makridakis, Wheelwright, and Hyn-

dman (1998, Ch. 2). Note that the MAPE can be infinity if any yt = 0, and will change
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when the model is reformulated in differences. For more information see Clements and
Hendry (1998). The MAAPE is the mean arctangent absolute percentage error, defined
in §19.4. The MAAPE avoids the problem that the MAPE has with outcomes (close to)
zero.

5.3 Closed versus conditional models

A simple example of a conditional model is yt = βyt−1 + γxt + ϵt. Unlike the AR(1),
forecasts now need future values of xt:

Forecast horizon Static Forecast Dynamic Forecast
T + 1 ŷT+1 = β̂yT + γ̂xT+1 ŷT+1 = β̂yT + γ̂xT+1

T + 2 ŷT+2 = β̂yT+1 + γ̂xT+2 ŷT+2 = β̂ŷT+1 + γ̂xT+2

T + 3 ŷT+3 = β̂yT+2 + γ̂xT+3 ŷT+3 = β̂ŷT+2 + γ̂xT+3

For the current model, to obtain the one-step (or static) forecast of CONS for 1990Q4,
we need to know the INC and INFLAT values for 1990Q4, and CONS from the previous
period. The next static forecast is again based on observed values for INC, INFLAT
and previous CONS. For pure forecasting purposes, we need to make dynamic forecasts,
usually requiring forecasts of all explanatory variables as well.
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Figure 5.2 Static and dynamic forecasts from CONS model

In Figure 5.2, the dynamic ‘forecasts’ are based on the actual values of INC and
INFLAT, so only available ex post. Alternative solutions are needed to get proper ex-
ante forecasts: some strategies are discussed in the next section.
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5.4 Cardt forecasts
Cardt is a slightly improved version of Card (calibrated average of rho and delta meth-
ods), see Doornik, Castle, and Hendry (2020), which performed very well in the M4
forecast competition of Makridakis, Spiliotis, and Assimakopoulos (2020). Cardt aver-
ages forecasts from a differenced, autoregressive, and a moving average model. These
are then treated as future observations in a calibration model with richer autoregressive
structure. The full procedure is documented in Castle, Doornik, and Hendry (2019).

Cardt pays particular attention to seasonality, which is not important in the tutorial
data set. To illustrate this, we switch to the DHSY data set, estimating model (7.1),
except that we use the budget dummy only (VAT is in our forecast period):
EQ( 4) Modelling LC by OLS

The dataset is: .\OxMetrics9\data\DHSY.in7
The estimation sample is: 1958(2) - 1972(2)

Coefficient Std.Error t-value t-prob Part.R^2
LC_4 0.950804 0.03424 27.8 0.0000 0.9414
Constant -0.0494147 0.1084 -0.456 0.6505 0.0043
LY 0.223095 0.04788 4.66 0.0000 0.3115
LY_1 0.177718 0.05451 3.26 0.0021 0.1813
LY_4 -0.140977 0.05576 -2.53 0.0148 0.1175
LY_5 -0.203764 0.05376 -3.79 0.0004 0.2303
D4LPC -0.439049 0.1289 -3.41 0.0013 0.1946
D4LPC_1 0.245104 0.1291 1.90 0.0636 0.0699
D6812 0.00905659 0.004679 1.94 0.0588 0.0724

sigma 0.00605159 RSS 0.00175784324
R^2 0.996978 F(8,48) = 1979 [0.000]**
Adj.R^2 0.996474 log-likelihood 215.142
no. of observations 57 no. of parameters 9
mean(LC) 8.78621 se(LC) 0.10191

Figure 5.3 shows the dynamic forecasts from the conditional model, which use ob-
served values for LY and D4LPC, together with the Cardt forecasts. The Cardt interval
forecasts are much larger here. These may be too large, but assume that the future of
output and inflation is known.

Conditional forecasts (ex post) 
LC 
Cardt +/-2SE 

1970 1971 1972 1973 1974 1975 1976

8.75

9.00

9.25
Conditional forecasts (ex post) 
LC 
Cardt +/-2SE 

Figure 5.3 Conditional and Cardt forecasts for DHSY model

Cardt offers two ways to make ex-ante forecasts: (1) use Cardt directly, or (2) use



5.4 Cardt forecasts 67

Cardt forecasts of LY and D4LPC in the conditional model. The former is directly avail-
able from the Forecast dialog. The second method is used automatically when future
values of explanatory variables are missing. Because that is not the case here, we need
to artificially create this situation: create y as a copy of LY and D4P from D4LPC. Then
set the observations from 1972(3) onwards to missing values. This can be done by
selecting those observations, and then pressing Del:

Now reformulate the model with the new variables, checking that the estimates are
identical. Figure 5.4 shows both types of ex ante forecasts, and the outcomes. The
intervals have been removed: those from the extended conditional model are definitely
too small.

Forecasts (ex ante, Cardt conditionals) 
LC 
Cardt +/-2SE 

1970 1971 1972 1973 1974 1975 1976

8.9

9.0

9.1 Forecasts (ex ante, Cardt conditionals) 
LC 
Cardt +/-2SE 

Figure 5.4 Ex post forecasts for DHSY model from Cardt and the extended condi-
tional model

The output for dynamic forecasts reports that forecasts for the explanatory variables
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were created until the end of the database:

Automatic extension for dynamic forecasting:
y: 20 observations added by Cardt
y_1: 19 observations added by Cardt
y_4: 16 observations added by Cardt
y_5: 15 observations added by Cardt
D4p: 20 observations added by Cardt
D4p_1: 19 observations added by Cardt

A third solution is to switch to multiple-equation dynamic modelling, and to make
LY and D4LPC endogenous in a system such that all the variables are jointly forecast.
The Batch code for this model is:

module("PcGive");
package("PcGive", "Multiple-equation");
usedata("DHSY.in7");
system
{

Y = LC, LY, D4LPC;
Z = LC 1:4, LY 1:5, D4LPC 1:2;
U = Constant, D6812;

}
model
{

LC = LC_1, LC_4, LY, LY_1, LY_4, LY_5, D4LPC, D4LPC_1;
LY = LY_1, LY_2, LY_3, LY_4;
D4LPC = D4LPC_1, D4LPC_2;

}
estimate("FIML", 1958, 3, 1972, 2);
forecast(16, 0, 2, 0, "+Cardt", 0, 0);

Estimation starts two quarters later because of the lags used in the D4LPC equation.
Figure 5.5 shows the forecasts from the simultaneous equations model (SEM). The
bottom two graphs show the ‘inputs’ into the ex ante forecasts. The Cardt forecasts are
used in the extrapolated conditional model, while the autoregressive forecasts feed into
the LC equation forecasts.

5.5 Robust forecasts, level forecasts

Robust forecasts are obtained by applying the difference operator to both sides of the
estimated model. This gives forecasts of the changes, which are then added to the last
observed level. Details are in §19.4.

While robust forecasts transform to differences, and then map back, level forecasts
present forecasts from a model that is already differenced by undoing the transforma-
tion. This option will only work if the original variable is found in the database, and the
transformation is recognized, see §19.4.

Alternatively, Algebra expressions can be used to forecast derived functions. In that
case, forecast intervals are found numerically.
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Figure 5.5 Ex post forecasts for DHSY model from Cardt and the simultaneous equa-
tions model

5.6 Hedgehog plots
‘Hedgehog’ plots shows forecasts at every point in the sample. Because most models
are equilibrium correcting, they will turn back to the built-in equilibrium. However,
after a break, this can now be the wrong equilibrium, and the graphs will look like a
(perhaps inverted) hedhehog.

PcGive offers two types of hedgehog graphs:
1. After estimating the model: using full sample parameter estimates. The same values

are used for all ‘forecasts’, so we label the graphs dynamic simulation.
2. After recursive estimation: using recursive estimates. So these are forecasts in that

they use past information only in the parameter forecasts. In conditional models the
forecasts will still be conditional on the available regressors, so ex post.
Castle, Doornik, and Hendry (2022) give an example of hedehog plots, shown here

in Figure 5.6.

In the next chapter we consider strategies for model reduction, and the facilities that
PcGive offers to the applied modeller. This is followed by a chapter on automatic model
reduction — an important addition to our toolbox and a major time-saving device.
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Figure 5.6 Recursive forecasts of smoothed daily reductions in CO2 during 2020:
global emissions (left), international aviation (right). Three forecasting methods: AR(1)
(first row); robust AR(1) (middle row); Cardt (bottom row). Data from carbon monitor.



Chapter 6

Tutorial on Model Reduction

6.1 The problems of simple-to-general modelling
While the models used above were mainly selected as illustrations of the use of PcGive,
they actually highlighted four important issues:
1. Powerful tests can reveal model inadequacies: it is not sensible to skip testing in the

hope that the model is valid.
2. A reject outcome on any test invalidates all earlier inferences, rendering useless the

time spent up to then – empirical research becomes highly inefficient if done that
way.

3. Once a problem is revealed by a test, how do you proceed? It is a dangerous non
sequitur to adopt the alternative hypothesis of the test which rejected: did you nearly
do this with residual autocorrelation, by assuming it was error autoregression and
looking for Cochrane–Orcutt [that is, RALS here]?

4. What can be done if two or more statistics reject? Which has caused what? Do both
or only one need to be corrected? Or should third factors be sought?

As discussed in Chapters 13 and 15, the whole paradigm of postulating a simple
model and seeking to generalize it in the light of test rejections or anomalies is suspect,
and in fact makes sub-optimal use of PcGive’s structure and functioning. Let us now
switch to its mode of general-to-specific modelling.

6.2 Formulating general models
We wish to start this chapter with a clean modelling sheet. So exit PcGive and re-enter
if you want your model numbering to coincide with the output presented in this chapter.

Turn to the formulation dialog to create a completely new, general specification. In
substantive research, the starting point should be based on previous empirical research
evidence (to test in due course that earlier findings are parsimoniously encompassed),
economic (or other relevant subject matter) theory, institutional knowledge, the data
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frequency – and common sense. Here, we base the initial model on Davidson, Hendry,
Srba, and Yeo (1978) (denoted DHSY below) and begin by formulating an equation
with CONS, INC, INFLAT and Constant as its basic variables (you could add in OUT-
PUT too if you like, but logic suggests it should be irrelevant given income).

Choose CONS, INC, and INFLAT with two lags each: please note that we are still
only illustrating – in practice, five lags would be a better initial lag length for quarterly
data, but in a tutorial, the mass of detail could swamp the principles if we reported all
the numbers for a long lag length. Do not retain any forecasts for this run and select full
sample OLS:

EQ( 1) Modelling CONS by OLS (using data.oxdata)
The estimation sample is: 1953(3) - 1992(3)

Coefficient Std.Error t-value t-prob Part.R^2
CONS_1 0.823338 0.08223 10.0 0.000 0.4038
CONS_2 -0.0315462 0.07151 -0.441 0.660 0.0013
Constant -20.7434 9.070 -2.29 0.024 0.0341
INC 0.500117 0.02922 17.1 0.000 0.6643
INC_1 -0.295872 0.05568 -5.31 0.000 0.1602
INC_2 0.0255575 0.04471 0.572 0.568 0.0022
INFLAT -0.844115 0.2521 -3.35 0.001 0.0704
INFLAT_1 -0.0801516 0.4348 -0.184 0.854 0.0002
INFLAT_2 -0.137750 0.2633 -0.523 0.602 0.0018

sigma 1.09027 RSS 175.92662
R^2 0.993857 F(8,148) = 2993 [0.000]**
Adj.R^2 0.993524 log-likelihood -231.708
no. of observations 157 no. of parameters 9
mean(CONS) 875.78 se(CONS) 13.5487

Scan the output, noting the coefficient estimates en route (e.g. four t-values are
small). Select the dynamic analysis to compute the static long-run solution:

Solved static long run equation for CONS
Coefficient Std.Error t-value t-prob

Constant -99.6282 38.05 -2.62 0.010
INC 1.10372 0.04237 26.0 0.000
INFLAT -5.10074 0.5484 -9.30 0.000
Long-run sigma = 5.23645

ECM = CONS + 99.6282 - 1.10372*INC + 5.10074*INFLAT;
WALD test: Chi^2(2) = 981.088 [0.0000] **

Note the coefficient values (for example, INC is close to unity, INFLAT to −5) and
their small standard errors (so INC is apparently significantly different from unity).

6.3 Analyzing general models
The analysis of the lag structure is now more interesting: the unit-root t-tests show
that the three basic variables matter as long-run levels (less so if very long lags were
selected initially), which rejects a lack of cointegration. The F-tests on the (whole)
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lag polynomials show that each also matters dynamically. However, lag length 2 is
irrelevant, whereas the first lag cannot be removed without a significant deterioration in
fit.

Analysis of lag structure, coefficients:
Lag 0 Lag 1 Lag 2 Sum SE(Sum)

CONS -1 0.823 -0.0315 -0.208 0.0322
Constant -20.7 0 0 -20.7 9.07
INC 0.5 -0.296 0.0256 0.23 0.038
INFLAT -0.844 -0.0802 -0.138 -1.06 0.132

Tests on the significance of each variable
Variable F-test Value [ Prob] Unit-root t-test
CONS F(2,148) = 306.93 [0.0000]** -6.4716**
Constant F(1,148) = 5.2302 [0.0236]*
INC F(3,148) = 102.74 [0.0000]** 6.0458
INFLAT F(3,148) = 32.254 [0.0000]** -8.039

Tests on the significance of each lag
Lag 2 F(3,148) = 0.17158 [0.9155]
Lag 1 F(3,148) = 38.745 [0.0000]**

Tests on the significance of all lags up to 2
Lag 2 - 2 F(3,148) = 0.17158 [0.9155]
Lag 1 - 2 F(6,148) = 207.76 [0.0000]**

These four perspectives on the model highlight which reductions are consistent with
the data, although they do not tell you in what order to simplify. That issue can be
resolved in part by more experienced researchers (for one example see the discussion
in Hendry, 1987). For the moment, we will follow a sequential simplification route,
although generally it is better to transform to near orthogonality prior to simplification.

Can we trust the tests just viewed? The natural attack on that issue is to test all of
the congruency requirements listed in the Help: so test using the test summary. Many
of these tests will already have been conducted during earlier tutorials. The residual
plot looks normal, and no test rejects, although either of the autocorrelation or RESET
tests suggests a possible problem may be lurking in the background (the former option
gives significant negative autocorrelation possibly owing to overfitting – keep an eye
on how that evolves as simplification proceeds). COMFAC accepts that one common
factor can be extracted (matching the insignificant 2nd order lag, which would imply
that the common factor had a coefficient of zero) but strongly rejects extracting two.
The omitted variables test reveals that OUTPUT is indeed irrelevant. And the linear
restrictions test confirms that long-run homogeneity of CONS with respect to INC is
rejected at the 5% level. Tentatively, therefore, we accept the general or statistical
model as data-congruent, with no need for the second lag.

AR 1-5 test: F(5,143) = 2.1861 [0.0589]
ARCH 1-4 test: F(4,149) = 1.0123 [0.4030]
Normality test: Chi^2(2) = 1.6495 [0.4384]
Hetero test: F(16,140) = 0.74629 [0.7425]
Hetero-X test: F(44,112) = 0.80959 [0.7843]
RESET23 test: F(2,146) = 2.3183 [0.1021]
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COMFAC Wald test table, COMFAC F(4,148) = 21.0177 [0.0000] **
Order Cumulative tests Incremental tests
2 Chi^2(2) = 0.39429 [0.8211] Chi^2(2) = 0.39429 [0.8211]
1 Chi^2(4) = 84.071 [0.0000]** Chi^2(2) = 83.676 [0.0000]**

Omitted variables test: F(2,146) = 0.252122 [0.7775]
Added variables:
[0] = OUTPUT
[1] = OUTPUT_1

Test for linear restrictions (Rb=r):
R matrix

CONS_1 CONS_2 Constant INC INC_1 INC_2
1.0000 1.0000 0.00000 1.0000 1.0000 1.0000
INFLAT INFLAT_1 INFLAT_2

0.00000 0.00000 0.00000
r vector

1.0000
LinRes F(1,148) = 4.71427 [0.0315] *

6.4 Sequential simplification
For comparability with later models, transform the dependent variable to DCONS =

∆CONS. Use the OxMetrics calculator to create DCONS, return to model formulation,
delete CONS from the model, then add DCONS and mark it as endogenous. Now
delete all the lags at 2 periods and repeat estimation, keeping the sample starting point
to 1953(3) to match the initial model (this is the default behaviour of PcGive: sample
periods are sticky). Note the coefficient estimates as you proceed:
EQ( 2) Modelling DCONS by OLS (using data.oxdata)

The estimation sample is: 1953(3) - 1992(3)
Coefficient Std.Error t-value t-prob Part.R^2

Constant -19.9390 8.584 -2.32 0.022 0.0345
CONS_1 -0.202149 0.02725 -7.42 0.000 0.2670
INC 0.500235 0.02857 17.5 0.000 0.6700
INC_1 -0.277320 0.03808 -7.28 0.000 0.2599
INFLAT -0.784047 0.1857 -4.22 0.000 0.1056
INFLAT_1 -0.262993 0.2057 -1.28 0.203 0.0107

sigma 1.08126 RSS 176.538482
R^2 0.765599 F(5,151) = 98.64 [0.000]**
Adj.R^2 0.757838 log-likelihood -231.981
no. of observations 157 no. of parameters 6
mean(DCONS) -0.189886 se(DCONS) 2.19724

Eventhough the sigma and RSS have hardly changed from the previous model, R2

is substantially lower because of the change in the dependent variable from CONS to
DCONS (i.e. subtracting lagged CONS on both sides of the equation).

The lag analysis and test options can be reused although the model has been mod-
ified by a valid deletion – later, the Progress dialog will be used to take care of testing
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the validity of reductions. Using test summaries, few keystrokes or mouse clicks are
needed to completely re-estimate, regraph and retest the simplified model. Now the
apparent residual autocorrelation has gone, suggesting that the earlier interpretation of
overfitting was valid. RESET, too, is a little better. After testing whatever hypotheses
are desired, select Progress on the OxMetrics Model dialog. A dialog appears, listing
all the estimated models:

To offer a default sequence, PcGive decides that model A could be nested in model
B if the following conditions hold:

• model A must have a lower log-likelihood (i.e. higher RSS),
• model A must have fewer parameters,
• model A and B must have the same sample period and database.

PcGive does not check if the same variables are involved, because transformations could
hide this. As a consequence PcGive does not always get the correct nesting sequence,
and it is the user’s responsability to ensure nesting.

There are four options on the dialog:
• Mark Specific to General

Marks more general models, finding a nesting sequence with strictly increasing log-
likelihood.

• Mark General to Specific

Marks all specific models that have a lower log-likelihood.
• All

Marks all models.
• None

Deselects all models.
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The default selection is found by first setting the most recent model as specific, and then
setting the general model that was found as the general model. In this case, PcGive has
marked both models,

Press OK to see the progress output:
Progress to date
Model T p log-likelihood SC HQ AIC
EQ( 1) 157 9 OLS -231.70831 3.2415 3.1375 3.0663
EQ( 2) 157 6 OLS -231.98086 3.1484< 3.0790< 3.0316<

Tests of model reduction
(please ensure models are nested for test validity)
EQ( 1) --> EQ( 2): F(3,148) = 0.17158 [0.9155]

T is the number of observations, and p the number of esstimated parameters. This is
followed by the estimation procedure (OLS here) and the log-likelihood. Finally, three
information criteria are listed: SC (Schwarz criterion), HQ (Hannan–Quinn) and AIC
(Akaike information criterion). The F-test is the likelihood-ratio test for deleting all
2-lagged variables.

Next, we will transform the model to a more interpretable specification, similar to
DHSY. Bring up the calculator to transform the variables to sustain a new model of the
form:

∆CONSt = β0 + β1∆INCt + β2(INC− CONS)t−1 + β3INFLATt

+β4INCt−1 + β5INFLATt−1.

Create (INC-CONS) by subtracting CONS from INC; call it SAVING, These new vari-
ables need to be added to the model: add DINC and SAVING with one lag. Then INC,
current SAVING and CONS 1 (or INC 1) must be deleted. Note that it is exactly the
same model as model 2 but with a different parametrization and hence a different extent
of collinearity (see Chapter 16). Therefore, there is no need to re-estimate this model.
But note in the previous output that INFLAT 1 is insignificant, so delete INFLAT 1
to retain only DCONS, Constant, DINC, SAVING 1, INFLAT and INC 1 (that is, 5
regressors). Estimate over the same sample period as previous models, to get model 3:
EQ( 3) Modelling DCONS by OLS (using data.oxdata)

The estimation sample is: 1953(3) - 1992(3)

Coefficient Std.Error t-value t-prob Part.R^2
Constant -19.6232 8.598 -2.28 0.024 0.0331
DINC 0.507352 0.02808 18.1 0.000 0.6823
SAVING_1 0.188689 0.02519 7.49 0.000 0.2696
INC_1 0.0205447 0.009459 2.17 0.031 0.0301
INFLAT -0.994858 0.08552 -11.6 0.000 0.4710

sigma 1.08352 RSS 178.449873
R^2 0.763061 F(4,152) = 122.4 [0.000]**
no. of observations 157 no. of parameters 5

Test as before and return to check the reduction sequence (again acceptable). Note the
greater interpretability of the regression parameters in this differences and levels form;
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also note that the effect of INC 1 is small, but matching the earlier static long run, is
significantly different from zero when conventional critical values are used (but see,
for example, Banerjee, Dolado, Galbraith, and Hendry, 1993 for an analysis). In fact,
the DGP for CONS does have a long-run coefficient of unity for INC, so we will next
delete that variable (albeit anticipating a ‘significant’ reduction this time: in fact, INC is
endogenous here, and given the number of tests we planned to use, a 1% level for each
would be sensible so the deletion is not deleterious). Thus, delete INC 1, and go back
through estimation and testing (note the greatly improved precision of the coefficients
estimates in exchange for the cost of an increase in the residual standard error). Again
select the nesting sequence in the Progress dialog.

All the diagnostic tests are acceptable from the test summary, and the Progress
report is:
Progress to date
Model T p log-likelihood SC HQ AIC
EQ( 1) 157 9 OLS -231.70831 3.2415 3.1375 3.0663
EQ( 2) 157 6 OLS -231.98086 3.1484 3.0790 3.0316
EQ( 3) 157 5 OLS -232.82621 3.1270 3.0692< 3.0296<
EQ( 4) 157 4 OLS -235.22574 3.1253< 3.0791 3.0475

Tests of model reduction
EQ( 1) --> EQ( 2): F(3,148) = 0.17158 [0.9155]
EQ( 1) --> EQ( 3): F(4,148) = 0.53068 [0.7134]
EQ( 1) --> EQ( 4): F(5,148) = 1.3565 [0.2441]

EQ( 2) --> EQ( 3): F(1,151) = 1.6349 [0.2030]
EQ( 2) --> EQ( 4): F(2,151) = 3.1863 [0.0441]*

EQ( 3) --> EQ( 4): F(1,152) = 4.7180 [0.0314]*

At the 5% level, Model 4 is ‘significantly’ worse than both models 2 and 3 but not
than model 1; however, its SC is smaller (log T ≈ 5.0 here, so SC falls for all values
of F less than about 5) and hence model selection depends in this sample on the choice
of criterion and the level of significance. All further reductions by elimination will be
significant, although other transformations plus reductions might prove successful: try
using the ECM which imposes the long-run inflation coefficient as well.

Finally, the resulting model can be re-estimated by RLS to test recursively for pa-
rameter constancy (actually, the above model is not fully congruent, and the anomalous
results are reflections of that, although the estimates are quite close to those used in the
DGP, see Appendix A2). Figure 6.1 shows the graphical analysis of this final model,
re-estimated with 12 forecasts.

Tip Until a data set is saved, all changes within a run are transient; thus, changes will
not be kept if you exit prior to saving your data. This is important if new transfor-
mations have been created and so automatically added to the database. OxMetrics
will enquire as you exit if you wish to save the data. If you forget to save the trans-
formed data, you will still have a record of the transformations in the results file.
You could then paste the code of the transformations to the Algebra editor, save it
and then load the algebra file to transform on each run.
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Figure 6.1 Graphical statistics for the final model with 12 forecasts

6.5 Encompassing tests

The final necessary condition is to ensure that the empirical model which was obtained
in the previous section is in the set of useful contenders, i.e. it is not dominated by
any other model. More stringently, one might desire that no other model (M2 say)
explained features of the data which one’s own model (M1) could not. This idea will
be formalized in §13.7.5 by encompassing (also see §15.7.6). We end this tutorial with
a test for encompassing, which necessitates two non-nested models.

Start by regressing DCONS on CONS 1, INC, INC 1 and INFLAT 1, keeping the
sample as before: 1953 (3) to 1992 (3). For the next model, delete INFLAT 1, adding
INFLAT instead, and estimate. Then select Encompassing from the Test/Test dialog.
The output comprises:

Encompassing test statistics: 1953(3) - 1992(3)

M1 is: DCONS on
Constant CONS_1 INC INC_1 INFLAT_1

M2 is: DCONS on
Constant CONS_1 INC INC_1 INFLAT

Instruments used:
Constant CONS_1 INC INC_1 INFLAT_1
INFLAT

sigma[M1] = 1.13957 sigma[M2] = 1.08352 sigma[Joint] = 1.08126
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Test Model 1 vs. Model 2 Model 2 vs. Model 1
Cox N(0,1) = -5.039 [0.0000]** N(0,1) = -1.382 [0.1670]
Ericsson IV N(0,1) = 4.407 [0.0000]** N(0,1) = 1.312 [0.1895]
Sargan Chi^2(1) = 16.057 [0.0001]** Chi^2(1) = 1.6281 [0.2020]
Joint Model F(1,151) = 17.835 [0.0000]** F(1,151) = 1.6349 [0.2030]

All the tests listed are automatically computed; none rejects model 2 and all reject
model 1 (see Chapter 13 for details). How many hours would that have taken with an-
other program? And we have many tools yet untried to dig deeper into the performance
of econometric equations. Naturally you can extend, contract, transform or abandon
your model, switch sample period or estimation methods, save the model’s predictions,
etc.

6.6 Model revision
If you have made it this far, you can manage on your own for a bit. We hope you
enjoyed doing empirical econometrics using PcGive and found it easy, powerful and
friendly to use. It is well worth reading through the econometrics Chapters 12–16. You
will learn a great deal about the inadequacy of conventional methods when you see
what you can investigate about claimed models. Indeed, you could now test your skills
against PcGive’s automatic selection algorithm discussed in the next chapter. Or read
the final tutorial chapter to delve further into non-linear models.



Chapter 7

Tutorial on Automatic Model Selection
using Autometrics

7.1 Introduction
We now turn to what is perhaps the most useful part of PcGive: automatic model selec-
tion using Autometrics. The objective is to let the computer do a large part of what was
done by hand in the previous chapter. PcGive will be able to find a model much quicker
than we can. Of course, there is always the option to do the model selection by hand —
but it will be quite a challenge to beat Autometrics.

Autometrics is a computer implementation of general-to-specific modelling. Addi-
tional information is provided in §13.6.5, §15.8, §16.10 and §16.11.

The starting point for Autometrics is a model formulated in the normal way. This
initial model is called the general unrestricted model or GUM. It should be a well-
specified model, able to capture the salient features of the dependent variable and pass
all diagnostic tests. Following the GUM, the main decision is the significance level for
reduction. This determines at what significance regressors are removed. It also specifies
the extent to which we accept a deterioration in information relative to the GUM.

7.2 Modelling CONS
In §6.2 we shied away from using 5 lags to keep the model simple. Now we can be more
ambitious, allowing for lags up to 5. Since the data is quarterly, we also add seasonals.
In the previous chapter it was noted that OUTPUT should not matter. To investigate this,
we add it to the model as well. Next, we add a trend as well. Finally, we change
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the status of the Constant to Unrestricted, which means that it will be included in all
model, and never be a candidate for removal:

Accept, then mark Autometrics, which activates the remainder of the dialog:

The Autometrics options include:
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• Target size

This is the significance level (gauge) that is used for reduction. Change this to 0.05.
• Pre-search lag reduction

Pre-search lag reduction is switched on by default. In that case lags are considered
at a relaxed significance level prior to the tree search.

• Outlier and break detection

Keep this at None. Alternative options are: Large residuals to automatically create
dummies for large residuals in the GUM, and various forms of saturation estimation,
which creates indicators for all observations.

• Advanced Autometrics settings

offers an additional dialog with advanced settings.
Press Next, and again in the next dialog which is unchanged from before (check that

you’re using the full sample, but keeping back 8 forecasts). Automatic model selection
is quick, but generates more output.

• Initial GUM
First the GUM is printed. The output below is not how PcGive shows it. Instead we
have sorted the regressors by t-prob,1 i.e. by decreasing significance:
GUM( 1) Modelling CONS by OLS

The dataset is: .\OxMetrics9\data\data.oxdata
The estimation sample is: 1954(2) - 1990(3)

Coefficient Std.Error t-value t-prob Part.R^2
CONS_1 0.830846 0.08890 9.35 0.0000 0.4254
CONS_2 0.0469890 0.1144 0.411 0.6821 0.0014
CONS_3 -0.145165 0.1122 -1.29 0.1984 0.0140
CONS_4 0.203567 0.1151 1.77 0.0796 0.0258
CONS_5 -0.130402 0.08186 -1.59 0.1138 0.0211
INC 0.517010 0.03455 15.0 0.0000 0.6549
INC_1 -0.317299 0.06199 -5.12 0.0000 0.1817
INC_2 -0.0436936 0.06724 -0.650 0.5171 0.0036
INC_3 0.117536 0.06678 1.76 0.0810 0.0256
INC_4 -0.0459441 0.06746 -0.681 0.4972 0.0039
INC_5 -0.00467039 0.05167 -0.0904 0.9281 0.0001
INFLAT -0.813034 0.3828 -2.12 0.0358 0.0368
INFLAT_1 0.0409535 0.6164 0.0664 0.9471 0.0000
INFLAT_2 -0.445348 0.6216 -0.716 0.4751 0.0043
INFLAT_3 -0.304589 0.6194 -0.492 0.6238 0.0020
INFLAT_4 0.774675 0.6032 1.28 0.2015 0.0138
INFLAT_5 -0.151879 0.3381 -0.449 0.6541 0.0017
OUTPUT -0.0191173 0.03413 -0.560 0.5764 0.0027
OUTPUT_1 0.0148181 0.05235 0.283 0.7776 0.0007
OUTPUT_2 -0.0270185 0.05293 -0.510 0.6107 0.0022
OUTPUT_3 0.0597238 0.05445 1.10 0.2749 0.0101
OUTPUT_4 0.0245582 0.05537 0.444 0.6582 0.0017
OUTPUT_5 -0.0569915 0.04664 -1.22 0.2241 0.0125
Seasonal 0.156812 0.2775 0.565 0.5731 0.0027
Seasonal_1 0.148358 0.2874 0.516 0.6066 0.0023
Seasonal_2 0.0978711 0.2869 0.341 0.7336 0.0010

1This can be done easily by selecting the column using the right mouse button, then right-
clicking inside the selection, and using Sort.
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Trend 0.00136559 0.005169 0.264 0.7921 0.0006
Constant U -22.5912 23.22 -0.973 0.3326 0.0080

sigma 1.09474 RSS 141.416759
R^2 0.994618 F(27,118) = 807.7 [0.000]**
Adj.R^2 0.993387 log-likelihood -204.837
no. of observations 146 no. of parameters 28
mean(CONS) 876.437 se(CONS) 13.4621

AR 1-5 test: F(5,113) = 0.66538 [0.6505]
ARCH 1-4 test: F(4,138) = 1.3278 [0.2627]
Normality test: Chi^2(2) = 2.0460 [0.3595]
Hetero test: F(51,94) = 1.0212 [0.4565]
Chow test: F(43,75) = 1.2968 [0.1608] for break after 1979(4)

The first four form the core model we have worked with so far. The remaining 24
appear to be insignificant at 5%, but some may well survive into the final model. The
GUM is followed by the output of the diagnostic tests that are used by Autometrics.

• Dimensions
Next is some information regarding the size of the problem:
---------- Autometrics: dimensions of initial GUM ----------
no. of observations 146 no. of parameters 28
no. free regressors (k1) 27 no. free components (k2) 0
no. of equations 1 no. diagnostic tests 5
Fixed regressors: Constant

• 0.2 Pre-search lag reduction
The first stage of the automatic model selection is the pre-search lag reduction:
[0.2] Presearch reduction of initial GUM

Starting closed lag reduction at 0.33365
Removing lags(#regressors): none

Starting common lag reduction at 0.33365
Removing lags(#regressors): 2-2(4)

Starting common lag reduction at 0.33365 (excluding lagged y’s)
Removing lags(#regressors): 5-5(3) 4-4(3)

Presearch reduction in opposite order

Starting common lag reduction at 0.33365 (excluding lagged y’s)
Removing lags(#regressors): 2-2(3) 5-5(3) 4-4(3)

Starting common lag reduction at 0.33365
Removing lags(#regressors): 2-2(1) 3-3(4)

Starting closed lag reduction at 0.33365
Removing lags(#regressors): none

Encompassing test against initial GUM (iGUM) removes: none

Presearch reduction: 10 removed, LRF_iGUM(10) [0.8435]
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Presearch removed: CONS_2 INC_2 INC_4 INC_5 INFLAT_2
INFLAT_4 INFLAT_5 OUTPUT_2 OUTPUT_4 OUTPUT_5

The pre-search lag reduction is done in two sequences. Only lags that are insignif-
icant in both (at a reduced level) are removed from the initial GUM. All tests are
F-tests, derived from the likelihood-ratio (LR) test — they are the standard F-tests.
Lag 2, which has four variables (seasonals are not treated as lags), is the least signif-
icant with a p-value of 79%. In this case, both sequences remove exactly the same
regressors, so 10 terms are removed in the pre-search, leaving 18 coefficients.
The advanced options make it possible to print the full trace output. This tends to
be very long, but it can help to understand which steps are taken.

• 0.3 Test for empty model
The first step after pre-search is to test for an empty model at reduced significance,
which is strongly rejected:
[0.3] Testing GUM 0 at 0.333654: LRF(17) [0.0000] kept

• 1.0 Start of Autometrics tree search
– Searching from GUM 0 The first iteration of Autometrics finds two candidate

models:
Searching from GUM 0 k= 17 loglik= -208.221
Found new terminal 1 k= 6 loglik= -210.701 SC= 3.1253

Searching for contrasting terminals in terminal paths

Encompassing test against GUM 0 removes: none

p-values in GUM 1 and saved terminal candidate model(s)
GUM 1 terminal 1

CONS_1 0.00000000 0.00000000
CONS_4 0.04207161 0.04207161
CONS_5 0.00515000 0.00515000
INC 0.00000000 0.00000000
INC_1 0.00000000 0.00000000
INFLAT 0.00000000 0.00000000
k 6 6
parameters 7 7
loglik -210.70 -210.70
AIC 2.9822 2.9822
HQ 3.0403 3.0403
SC 3.1253 3.1253

In this case there is only one terminal model, but usually there are more.
– Searching from GUM 1, termination

GUM 1 is the starting point for the next search. This does not produce any new
terminal candidates:
Searching from GUM 1 k= 6 loglik= -210.701 LRF_GUM0(11) [0.9530]
Recalling terminal 1 k= 6 loglik= -210.701 SC= 3.1253

Searching for contrasting terminals in terminal paths
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• 2.0 Selection of final model from terminal candidates: terminal 1
Because there were no new models when searching from GUM 1, the table headed
‘p-values in Final GUM and terminal model(s)’ is the same as that reported after
searching from GUM 0, except that now the column of terminal one is marked. The
selected model has the lowest Schwarz Criterion (SC), which is terminal 1 here.
Before printing the final model, the output includes the coefficients, diagnostic tests
and a summary of the search:
p-values in Final GUM and terminal model(s)

Final GUM terminal 1
CONS_1 0.00000000 0.00000000
CONS_4 0.04207161 0.04207161
CONS_5 0.00515000 0.00515000
INC 0.00000000 0.00000000
INC_1 0.00000000 0.00000000
INFLAT 0.00000000 0.00000000
k 6 6
parameters 7 7
loglik -210.70 -210.70
AIC 2.9822 2.9822
HQ 3.0403 3.0403
SC 3.1253 3.1253

=======

coefficients and diagnostic p-values in Final GUM and terminal model(s)
Final GUM terminal 1

CONS_1 0.80847 0.80847
CONS_4 0.11066 0.11066
CONS_5 -0.12264 -0.12264
INC 0.50667 0.50667
INC_1 -0.28669 -0.28669
INFLAT -0.99557 -0.99557
k 6 6
parameters 7 7
loglik -210.70 -210.70
sigma 1.0500 1.0500
AR(5) 0.87186 0.87186
ARCH(4) 0.40984 0.40984
Normality 0.75718 0.75718
Hetero 0.72201 0.72201
Chow(70%) 0.09776 0.09776

=======

p-values of diagnostic checks for model validity
Initial GUM cut-off Final GUM cut-off Final model

AR(5) 0.65046 0.01000 0.87186 0.01000 0.87186
ARCH(4) 0.26267 0.01000 0.40984 0.01000 0.40984
Normality 0.35952 0.01000 0.75718 0.01000 0.75718
Hetero 0.45645 0.01000 0.72201 0.01000 0.72201
Chow(70%) 0.16081 0.01000 0.09776 0.01000 0.09776

Summary of Autometrics search
initial search space 2^27 final search space 2^6
no. estimated models 55 no. terminal models 1
test form LR-F target size Standard:0.05
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large residuals no presearch reduction lags
backtesting GUM0 tie-breaker SC
diagnostics p-value 0.01 search effort standard
time 0.01 Autometrics version 2.3

The final model, which differs from the one of the previous chapter, has lags four
and five of CONS (with almost opposite coefficients), as additional variables. Given 27
variables in the GUM, at 5% significance one might expect one or two to be retained
by chance; a 1% level would reduce that ‘spurious’ retention rate to about one variable
every three times that such a selection exercise was conducted. Any actions on the Test
menu now relate to this model. For example, testing that the coefficients on CONS 4
and CONS 5 sum to zero using Test/Linear Restrictions:

This is accepted with a p-value of 59%. Therefore, the long-run is not greatly
changed from that reported in §6.2:

Solved static long-run equation for CONS
Coefficient Std.Error t-value t-prob

INC 1.08089 0.04292 25.2 0.0000
INFLAT -4.89185 0.4984 -9.82 0.0000
Constant -79.4789 38.49 -2.07 0.0407
Long-run sigma = 5.15929

7.3 DHSY revisited

The DHSY model (Davidson, Hendry, Srba, and Yeo, 1978) is an equilibrium-
correction model for the logarithm of consumption, ct, where the equilibrium correction
is the gap between consumption and income, yt, with an additional price term, ∆4pt.
The DHSY model is seasonal: it uses fourth differences (the data are quarterly), and the
equilibrium is towards the gap from a year ago. There is a dummy, Dbudget, for budget
effects in 1968: +1 in 1968(1) and −1 in 1968(2), and a dummy, DVAT, for the intro-
duction of VAT: +1 in 1973(1) and −1 in 1973(2). DHSY use DVt = Dbudget +DVAT
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in their model:

∆̂4ct = −0.09(c− y)t−4 + 0.48∆4yt − 0.12∆4pt
−0.23∆1∆4yt − 0.31∆1∆4pt + 0.006∆4DVt.

Load the DHSY.in7 data file from the OxMetrics9\data folder, and run DHSY.alg
which is in the algebra folder. Formulate the GUM with LC as the dependent variable,
with up to 5 lags of LC, LY and D4LPC as explanatory variables. The constant is al-
ready there, add the differenced dummy D4DV without further lags, and finally add the
seasonals. Estimation is over the sample period 1959(2)–1975(4).

Autometrics at 5% with pre-search lag reduction finds three terminal models:
Final GUM terminal 1 terminal 2 terminal 3

LC_4 0.00000000 0.00000000 0.00000000 0.00000000
Constant 0.25080661 . 0.07892034 .
LY 0.00000000 0.00000000 0.00000000 0.00000000
LY_1 0.00001040 0.00001130 0.00004104 0.00000567
LY_4 0.12185243 0.00481955 . .
LY_5 0.00005534 0.00000006 0.00003951 0.00000000
D4LPC 0.00019983 0.00020981 0.00000000 0.00001474
D4LPC_1 0.03371598 0.01494571 . 0.00933580
D4DV 0.00190637 0.00201634 0.00059359 0.00027128
Seasonal 0.04210896 . 0.00741163 .
Seasonal_1 0.01466068 . 0.00017796 0.01432980
Seasonal_2 0.07091657 . 0.01482352 .
k 12 8 10 8
parameters 12 8 10 8
loglik 257.41 253.24 252.66 252.12
AIC -7.3256 -7.3205 -7.2437 -7.2872
HQ -7.1693 -7.2163 -7.1135 -7.1830
SC -6.9307 -7.0573 -6.9147 -7.0239

=======

The selected model is very similar to that found by Davidson, Hendry, Srba, and
Yeo (1978) (after much less effort than theirs!):

ĉt = 0.92
(0.0284)

ct−4 + 0.268
(0.0375)

yt + 0.194
(0.0404)

yt−1

− 0.135
(0.0462)

yt−4 − 0.246
(0.0396)

yt−5 − 0.376
(0.0951)

∆4pt

+ 0.252
(0.101)

∆4pt−1 + 0.00695
(0.00215)

∆4DVt

σ̂ = 0.59%

(7.1)
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7.4 Indicator saturation in DHSY
The two dummy variables found by Davidson, Hendry, Srba, and Yeo (1978), Dbudget

and DVAT, are differenced impulse indicators. In the notation that Autometrics uses for
the indicators:

DI#1973(1) II#1973(1) SI#1973(1) TI#1973(1)

1971(4) 0 0 1 −5
1972(1) 0 0 1 −4

(2) 0 0 1 −3
(3) 0 0 1 −2
(4) 0 0 1 −1

1973(1) 1 1 1 0

(2) −1 0 0 0

(3) 0 0 0 0

(4) 0 0 0 0

1974(1) 0 0 0 0

(2) 0 0 0 0

(3) 0 0 0 0

Algebra code can create these four variables in the database, e.g.:
di#1973(1) = DI#1973(1);
ii#1973(1) = II#1973(1);
si#1973(1) = SI#1973(1);
ti#1973(1) = TI#1973(1);

The date in the broken step and trend is the last period before the process changes:
for SI#1973(1), 1973(1) is the last date at which we get the value one, while for
TI#1973(1), in the next period, 1973(2), the trend is interrupted. All impulses are zero
at the end of the estimation sample, so their coefficients do not enter into the forecast
expressions.

The indicators have been renamed from PcGive version 15 (OxMetrics 8), but this is
only a change of labelling to improve consistency of naming: the same set of indicators
is still added, so model selection results are unchanged.

new name old name
DI#1973(1) "DI:1973(1)"

II#1973(1) "I:1973(1)"

SI#1973(1) "S1:1973(1)"

TI#1973(1) "T1:1972(4)"

Note that the date in the trend has shifted by one period, to more accurately reflect the
break date. This can be verified using the following PcGive Batch code (the Batch code
needs double quotes as in "DI#1973(1)", while Algebra code allows DI#1973(1)):
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createinterventions
{

"DI#1973(1)", "DI:1973(1)",
"II#1973(1)", "I:1973(1)",
"SI#1973(1)", "S1:1973(1)",
"TI#1973(1)", "T1:1972(4)"

}

PcGive Batch code can also be used to create a full set of dummies:

saturate("DIS");
saturate("IIS");
saturate("SIS");
saturate("TIS");
saturate("QIS"); // square of TIS
saturate("MIS@LY"); // MIS of LY
saturate("II#"); // or use impulse prefixes
saturate("I:"); // old style
saturate("S1:"); // old style
saturate("T1:"); // old style

Following DHSY, we saturate the model with differenced impulses using DIS
(Differenced-indicator saturation). The GUM is as before: up to 5 lags of LC, LY,
D4LPC, and seasonals, but now we omit D4DV. Estimation is still over 1959(2)–1975(4).
Saturation leads to more variables than observations, and we use Autometrics at 2.5%:



90 Chapter 7 Tutorial on Automatic Model Selection using Autometrics

The estimation reports on the progress of the block search algorithm that is used
when the number of observations exceeds 75% of the sample size. In this case, there
are 87 regressors for 67 observations:
Autometrics identification block search over regressors
no. initial regressors 87 no. of observations 67
significance level 0.025 block method standard
extension effort standard reduction effort standard
block backtesting GUM0 used in blocks A,B,C1,D1

Free variables in the GUM:
LC_1 ... LC_5 Constant LY ... LY_5 D4LPC ... D4LPC_5 Seasonal ... Seasonal_2
DI#1959(3) ... DI#1975(4)

A. Step 1: block search for omitted regressors
significance 0.025 diagnostics off
no of blocks 7 blocked by variable
0(11):7 1(13):4 2(13):0 3(13):0 4(13):0 5(13):0 6(11):0 found: 11

A. Step 2: determination of new candidate set, target size=0.025
size= 11 #pars= 6 loglik= 244.447 selected: 6

lag sel count sel run in GUM
LC 4 1 1 1
LY 0 1 1 1
LY 1 1 1 1
LY 4 1 1 1
LY 5 1 1 1
D4LPC 0 1 1 1

B. Step 1: block search for omitted regressors
significance 0.025 diagnostics delayed
no of blocks 7 blocked by variable
0(18):0 1(19):0 2(19):0 3(19):0 4(19):0 5(19):0 6(10):0 found: 0

B. Step 1 (continued):
significance 0.170213 diagnostics delayed
no of blocks 7 blocked by variable
0(18):2 1(19):3 2(19):7 3(19):0 4(19):4 5(19):2 6(10):0 found: 18

B. Step 2: determination of new candidate set, target size=0.025
size= 20 #pars= 9 loglik= 253.848 selected: 9

B. Step 1: block search for omitted regressors
significance 0.025 diagnostics delayed
no of blocks 7 blocked by variable
0(21):0 1(22):0 2(22):0 3(22):0 4(22):0 5(22):0 6(10):0 found: 0

lag sel count sel run in GUM
LC 4 3 3 1
LY 0 3 3 1
LY 1 3 3 1
LY 4 3 3 1
LY 5 3 3 1
D4LPC 0 3 3 1
DI#1964(1) 0 2 2 1
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DI#1972(1) 0 2 2 1
DI#1973(4) 0 2 2 1

C. Step 1: block search for omitted regressors
significance 0.05 diagnostics delayed
no of blocks 7 blocked by variable
0(21):2 1(22):0 2(22):0 3(22):0 4(22):2 5(22):0 6(10):0 found: 4

C. Step 2: determination of new candidate set, target size=0.0125
size= 13 #pars= 7 loglik= 248.051 selected: 7

lag sel count sel run in GUM
LC 4 4 4 1
LY 0 4 4 1
LY 1 4 4 1
LY 4 4 4 1
LY 5 4 4 1
D4LPC 0 4 4 1
DI#1964(1) 0 2 0 0
DI#1972(1) 0 2 0 0
DI#1973(4) 0 3 3 1

Block search complete, estimated 308 models in 0.03
- final selection size= 9 regs= 9 total= 9 loglik= 253.848

The block search leads to a set of variables that now forms the GUM for a standard
Autometrics run:

GUM(31) Modelling LC by OLS
The dataset is: D:\OxMetrics9\data\DHSY.in7
The estimation sample is: 1959(2) - 1975(4)

Coefficient Std.Error t-value t-prob Part.R^2
LC_4 0.925070 0.02835 32.6 0.0000 0.9483
LY 0.329794 0.03647 9.04 0.0000 0.5850
LY_1 0.114695 0.03539 3.24 0.0020 0.1533
LY_4 -0.190846 0.04489 -4.25 0.0001 0.2376
LY_5 -0.178237 0.03577 -4.98 0.0000 0.2997
D4LPC -0.137455 0.02200 -6.25 0.0000 0.4022
DI#1964(1) 0.00929929 0.004378 2.12 0.0379 0.0722
DI#1972(1) 0.0114537 0.004354 2.63 0.0109 0.1066
DI#1973(4) 0.0108089 0.004304 2.51 0.0148 0.0981

sigma 0.00588362 RSS 0.00200778444
R^2 0.992293 log-likelihood 253.848
no. of observations 67 no. of parameters 9
mean(LC) 8.84131 se(LC) 0.117559

With a reduction at 2.5%, only DI#1964(1) is a candidate for removal, so the final
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model has two indicators left:

ĉ = 0.9257
(0.029)

ct−4 + 0.33
(0.038)

yt + 0.1136
(0.036)

yt−1 − 0.2061
(0.046)

yt−4 − 0.1627
(0.036)

yt−5

− 0.137
(0.023)

∆4pt + 0.01104
(0.0045)

DI#1972(1)t + 0.01144
(0.0044)

DI#1973(4)t

σ̂ = 0.61.%

Testing the equality of the indicator coefficients has a p-value of 95%. Although the
final model is substantially unchanged, the timing of the dummies is different.

From PcGive 16 onwards the impulses are not created automatically in the database
anymore. Instead they are created ‘on demand’ when they are used in model formula-
tion. Batch code with an algebra block to create the dummies is written in the output:

// interventions that are not in the database:
algebra {

"DI#1972(1)" = DI#1972(1);
"DI#1973(4)" = DI#1973(4);

}



Chapter 8

Tutorial on Estimation Methods

Two main groups of single equation dynamic modelling estimation methods will be
explained. The first is instrumental variables estimation (IVE). The next are non-linear
least squares (NLS) methods. Maximum likelihood estimation, which is also is part of
the non-linear modelling class, is considered in Chapter 10.

8.1 Instrumental variables estimation

In many situations it may not be legitimate to treat all regressors as valid conditioning
variables, hence instrumental variables (IV) (which for extraneous reasons are known to
be valid) must be used. Reselect Model/Formulate as a first step towards the IV option.
To compute instrumental variables, PcGive needs to know the status (dependent – or
normalized – variable, endogenous, and exogenous or lagged) that you wish to assign
to each variable. Formulate the model with one lag of CONS and INC. With a predefined
dependent variable (CONS), known lags (CONS 1, INC 1) and a known status for the
Constant (exogenous, as it is deterministic), only INC needs a status. Thus, make INC

endogenous: right click on it and select Y: endogenous as shown:

93



94 Chapter 8 Tutorial on Estimation Methods

Next, the instruments must be selected. The lag polynomial choices for additional
instruments must be sufficient to identify the equation: add OUTPUT with one lag to
the model. Highlight both in the model, and select A: additional instrument in the
drop-down box below the model, and press the Set button to mark these as Additional
instruments. The model is now as shown above.

Next to accept and bring up the Model Settings dialog, with Instrumental variables

already indicated, and press OK again. The available estimation method is two-stage
least squares (TSLS). Keep 8 observations for static forecasting.

8.1.1 Structural estimates

The structural estimates from the IV estimation appear in OxMetrics:

EQ(3) Modelling CONS by IVE
The dataset is: ...\OxMetrics9\data\data.oxdata
The estimation sample is: 1953(2) - 1990(3)

Coefficient Std.Error t-value t-prob
INC Y 0.373349 0.1025 3.64 0.0004
CONS_1 1.01559 0.03633 28.0 0.0000
INC_1 -0.407460 0.07771 -5.24 0.0000
Constant 16.6558 14.38 1.16 0.2487

sigma 1.53761 RSS 345.179245
Reduced-form sigma 2.0505
no. endogenous variables 2 no. of instruments 5
no. of observations 150 no. of parameters 4
mean(CONS) 876.685 se(CONS) 13.3658
Additional instruments:
OUTPUT
OUTPUT_1

Specification test: Chi^2(1) = 14.883 [0.0001]**
Testing beta = 0: Chi^2(3) = 10986. [0.0000]**

1-step (ex post) forecast analysis 1990(4) - 1992(3)
Parameter constancy forecast tests:
Forecast Chi^2(8) = 6.5087 [0.5904]

The specification χ2-test is for the validity of the instruments – and strongly rejects.
Did you anticipate that? If so, which variables are the culprits? The χ2 (3) testing
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β = 0 is the analogue of the OLS F-test of R2 equal to zero (so testing whether all the
coefficients except the constant term are zero). Note how the coefficient of CONS 1 is
larger than unity. All of these counter indicators suggest serious mis-specification.

Next we test the model for other problems, similar to the approach and methods
used for least squares. The test summary was reported as:

AR 1-5 test: F(5,141) = 7.2440 [0.0000]**
ARCH 1-4 test: F(4,142) = 7.5340 [0.0000]**
Normality test: Chi^2(2) = 5.0900 [0.0785]
Hetero test: F(6,143) = 1.1672 [0.3272]
Hetero-X test: F(9,140) = 1.1480 [0.3334]

Note the significant residual autocorrelation, invalidating most of the inferences you
may have been tempted to make en route. The use of instrumental variables may correct
a simultaneity or measurement error problem, but the basic model specification must be
sound before their use.

8.1.2 Reduced forms

The reduced form estimates are the regressions of each endogenous variable on the
instruments alone, so there are two equations (for CONS and INC). Select Test/Further
Output and mark Reduced form estimates. Press OK to see:

Reduced form estimates
URF coefficients

CONS INC
CONS_1 1.0171 0.023619
INC_1 -0.079785 0.72756
Constant 6.2285 -58.808
OUTPUT 0.20994 0.26855
OUTPUT_1 -0.16812 -0.032723

URF coefficient standard errors
CONS INC

CONS_1 0.046472 0.064342
INC_1 0.050468 0.069875
Constant 25.118 34.777
OUTPUT 0.053144 0.073581
OUTPUT_1 0.054809 0.075885

URF equation standard errors
CONS INC

2.0505 2.8390

correlation of URF residuals
CONS INC

CONS 1.0000
INC 0.73243 1.0000

If these reduced form equations fit badly (in terms of their σ̂s), the IV estimates
will be poorly determined later. Note that these equations are unrestricted; once the
structural model (here CONS on CONS 1, INC, INC 1 and a Constant) is estimated, the
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reduced form equation for INC can be used to eliminate it from the structural equation
to produce a restricted reduced form for CONS. Thus, a comparison of the unrestricted
and restricted reduced forms allows a test for the validity of the instruments (see Sargan,
1964). This was shown with the structural estimates above: could you expect a good or
bad outcome on such a test from what you have seen here?

Dynamic forecasting is not available for IVE. Instead, build a simultaneous equa-
tions model using the multiple equation class, which allows dynamic forecasting from
such a model.

8.2 Non-linear least squares
We now turn to non-linear least squares (NLS) estimation. This method is shown sep-
arately on the Category list under Other models since it applies to any type of data. It
also requires a different method of equation formulation.

PcGive expects us to define a variable called ‘actual’ and a variable called ‘fitted’,
expressed in Algebra code. The program can then go ahead to minimize the sum of
squares (more precisely, PcGive maximizes −RSS/T , see Chapter 18):

min

T∑
t=1

ϵ̂2t ,

with ϵ̂2t defined as:
ϵ̂t = actual− fitted,

and fitted is fitted evaluated at the current parameter values. Parameters are written as
&0, &1, . . . , although the numbering does not have to be consecutive. Starting values
must always be provided with the code.

Maximization of the NLS objective function requires non-linear optimization, un-
like OLS estimation. NLS provides the flexibility needed in formulation to cover a wide
class of possible models. This makes the initial specification more complex. We are
cheating here at first and have simply set up a linear-least squares equation.

To facilitate the model formulation, first do OLS of CONS on a Constant, CONS 1,
INC and INC 1 over 1953 (2) to 1992 (3) less 8 forecasts. Then use the Non-linear

model format option from Test/Further results) to write the following Algebra code to
OxMetrics:

actual=CONS;
fitted=&0*CONS[-1] + &1 + &2*INC + &3*INC[-1];
// starting values:
&0=0.9854; &1=5.841; &2=0.5039; &3=-0.4961;

Then bring up the Non-linear model formulation dialog by selecting the Non-linear
modelling Model Class menu and pressing the Formulate button. Copy and paste the
Agebra code of the linear model from OxMetrics to the dialog. This formulates the
model we just estimated in algebraic code, complete with starting values.
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Accepting the model as shown in the capture below leads to the Non-linear model

estimation dialog. This offers a choice between direct estimation or the maximization
control dialog. Sample periods and forecasts can still be set here. We will use the full
sample with 8 forecasts and Non-linear estimation. Keep Automatic maximization

switched on:

Normally, good starting values, and proper scaling of the variables (to get coef-
ficients between 0.1 and 10, say), are important. Here, however, starting values are
not important, since OLS has a quadratic sum of squares function (we have good ones
anyway from the earlier OLS estimation). The results are the same as for OLS:

EQ(4) Modelling actual by NLS
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The dataset is: D:\OxMetrics9\data\data.oxdata
The estimation sample is: 1953(2) - 1990(3)

Coefficient Std.Error t-value t-prob Part.R^2
&0 0.985366 0.02809 35.1 0.0000 0.8940
&1 5.84075 11.68 0.500 0.6176 0.0017
&2 0.503870 0.03974 12.7 0.0000 0.5240
&3 -0.496128 0.04287 -11.6 0.0000 0.4784

sigma 1.48378 RSS 321.435502
R^2 0.987924 F(3,146) = 3981 [0.000]**
Adj.R^2 0.987676 log-likelihood -270.003
no. of observations 150 no. of parameters 4
mean(actual) 876.685 se(actual) 13.3658

Standard errors based on information matrix
BFGS/warm-up using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence

AR 1-5 test: F(5,141) = 7.2857 [0.0000]**
ARCH 1-4 test: F(4,142) = 5.9390 [0.0002]**
Normality test: Chi^2(2) = 8.3298 [0.0155]*
Hetero test: F(6,143) = 1.1426 [0.3408]
Hetero-X test: F(9,140) = 1.1915 [0.3050]

1-step (ex post) forecast analysis 1990(4) - 1992(3)

Parameter constancy forecast tests:
Forecast Chi^2(8) = 7.5050 [0.4833]
Chow F(8,146) = 0.90149 [0.5171]

8.3 Autoregressive least squares (RALS)

Now we return to undertake a more interesting non-linear estimation, namely mimick-
ing r-th order autoregressive least squares RALS. Reselect non-linear estimation, which
will show the model we had before. This time, restrict the coefficients of the dynamic
relation to satisfy the autoregressive error (that is, COMFAC) restriction for a static
regression of CONS on INC:

CONSt = αCONSt−1 + µ+ βINCt − αβINCt−1 + ϵt,

referring to the previous Algebra code, this imposes &3 = −&0 ∗&2:

actual=CONS;
fitted=&0*CONS[-1] + &1 + &2*INC - &0 * &2 * INC[-1];
// starting values:
&0=0.9854; &1=5.841; &2=0.5039;

Delete the starting value for &3, and accept this formulation. Press Estimate to esti-
mate.
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EQ(4) Modelling actual by NLS
The dataset is: D:\OxMetrics9\data\data.oxdata
The estimation sample is: 1953(2) - 1990(3)

Coefficient Std.Error t-value t-prob Part.R^2
&0 0.985760 0.01426 69.1 0.0000 0.9701
&1 6.00313 6.077 0.988 0.3248 0.0066
&2 0.503653 0.03733 13.5 0.0000 0.5533

sigma 1.47873 RSS 321.436087
R^2 0.987865 F(2,147) = 5983 [0.000]**
Adj.R^2 0.9877 log-likelihood -270.003
no. of observations 150 no. of parameters 3
mean(actual) 876.685 se(actual) 13.3658

Standard errors based on information matrix
BFGS/warm-up using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence

AR 1-5 test: F(5,142) = 6.1964 [0.0000]**
ARCH 1-4 test: F(4,142) = 5.9148 [0.0002]**
Normality test: Chi^2(2) = 8.3065 [0.0157]*
Hetero test: F(6,143) = 2.1893 [0.0473]*
Hetero-X test: F(9,140) = 1.4694 [0.1650]

1-step (ex post) forecast analysis 1990(4) - 1992(3)
Parameter constancy forecast tests:
Forecast Chi^2(8) = 7.5620 [0.4774]
Chow F(8,147) = 0.91154 [0.5087]

The Recursive graphics dialog gives access to recursive NLS. Parameter non-
constancy is obvious from the two Chow-test sequences in Fig. 8.1.

Occasionally, recursive estimation may suffer from a problem in that theRSS value
drops from one period to the next. This could happen when there are multiple optima
in the likelihood.

We could also have taken our initial values for the parameters from RALS on the
static model

CONSt = µ∗ + βINCt + ut,

ut = αut−1 + ϵt.

Pre-multiplying the first equation with 1− α gives:

CONSt = αCONSt−1 + (1− α)µ∗ + βINCt − αβINCt + ϵt.

To obtain starting values:
1. Estimate the static model over 1953(2)–1990(3) to get initial values for µ∗, β of
−176.300, 1.18024.

2. Store the residuals in the database, then regress the store variable on its lag (without
an intercept). This gives as 0.835236 the initial value of α.
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Figure 8.1 Recursive non-linear least squares constancy statistics

The RALS code and output is:

actual=CONS;
fitted=&0*CONS[-1] + (1-&0) * &1 + &2*INC - &0 * &2 * INC[-1];
// starting values:
&1=-176.300; &2=1.18024;&0=0.835236;

EQ(52) Modelling actual by NLS
The dataset is: D:\OxMetrics9\data\data.oxdata
The estimation sample is: 1953(2) - 1990(3)

Coefficient Std.Error t-value t-prob Part.R^2
&0 0.985760 0.01426 69.1 0.0000 0.9701
&1 421.558 33.88 12.4 0.0000 0.5130
&2 0.503653 0.03733 13.5 0.0000 0.5533

sigma 1.47873 RSS 321.436087
R^2 0.987865 F(2,147) = 5983 [0.000]**
Adj.R^2 0.9877 log-likelihood -270.003
no. of observations 150 no. of parameters 3
mean(actual) 876.685 se(actual) 13.3658

but note the difference in the intercept: this now is µ∗ so is much larger than the value
for µ = (1 − α)µ∗ in the formulation we had adopted previously. Which form is used
can substantially affect convergence when α is close to unity. Indeed, if you want to
create a very badly behaved problem, alter the definition of the intercept to µ/(1 − α)
and plot the grid over a wide range! Great care is needed in formulating the function
to be minimized. Finally, the alternative specification of the constant term ((1− α)µ∗)
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will lead to different recursive behaviour: the constant in the former vanishes when α
becomes one. If this happens in the RNLS estimation, this parameter will not be able
to get away from 1.

8.3.1 Optimization

To investigate ‘manual’ optimization, re-estimate the model, switching automatic max-
imization off. This leads to the maximization control:

The available options are:

1. Coefficient values can be set to any particular desired value by double clicking on
the coefficient in the list box.

2. Reset the initial values to those at dialog entry.
3. Estimate, to optimize the objective function starting from the listed coefficient val-

ues.
4. Press Options to control the maximization process:

• Change the maximum number of iterations (that is, steps in which the function
value reduces); if this number is reached, the optimization process will abort,
despite not finding the minimum yet.

• Specify how often (if at all) iteration output is printed; and
• Set the convergence criterion.

5. Conduct a Grid search over the model parameters, most importantly for the αi (la-
belled &0 in the dialog).

We see that some of the scores are very large: we have choosen bad starting values
an are nowhere near the maximum yet. Press Estimate to find the maximum:
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Next, we plot a grid, to view the graph of the function against the parameters. The
dialog allows you to select the region for the grid search, as well as the resolution of the
search. Press Grid:

Accept the default for &0: press Next grid to turn to &1, representing µ∗ above. Here
we need a bigger step than the default. Set this to 5, then press Next grid again. Finally,
for &2 set the step back to 0.1. The results are in Figure 8.2.

On completion of the grid, the RALS estimation dialog reappears. Now select
Alt+e for estimation. Note that iterations can be interrupted (for example, if too slow
or diverging), but here convergence is achieved very rapidly. After convergence, the
OK button lights up. Press OK to write the RALS output to the Results window.
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Figure 8.2 Autoregressive least squares grids

This concludes our tutorial on estimation methods. Further examples are given in
Chapter 10.



Chapter 9

Tutorial on Batch Usage

9.1 Introduction

In this book, the emphasis is very much on interactive use of PcGive. Sometimes, com-
mand driven operation can be useful, e.g. as a method of documenting research, or for
preparation of a teaching session. For this purpose, PcGive supports a batch language.
As with many other facilities, batch mode operates in cooperation with OxMetrics. It
is in OxMetrics that the batch commands are issued. OxMetrics then decides whether
it can handle the command (e.g. data loading and saving, algebra, database selection).
If not, the command is passed on to the active module (use the module command to
switch between e.g. PcGive and STAMP when both are open).

It is also possible to automatically generate the Ox code that can rerun the estima-
tions. This Ox code can then be run independently of the user interface. This allows for
much more general manipulations of the model inputs or outputs, which can be useful,
e.g., if many models need to be estimated routinely.

9.2 Generating and running Batch code

To see an example, re-estimate the GUM from §7.2 for CONS with 5 lags of CONS, INC,
INFLAT, and OUTPUT, using the maximum sample with 8 forecasts. Then switch to
OxMetrics, and Tools/Batch Editor or use the toolbar button to activate the batch editor.
The edit dialog appears, with the current model already formulated in the PcGive batch
language, as shown here:

104
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module("PcGive");
package("PcGive", "Single-equation");
usedata("data.oxdata");
system
{

Y = CONS;
Z = CONS 1 4:5, INC 0:1, INFLAT;
U = Constant;

}
/* Derived by Autometrics from GUM:
system
{

Y = CONS 0:5;
Z = INC 0:5, INFLAT 0:5, OUTPUT 0:5, Seasonal 0:2, Trend;
U = Constant;

}
autometrics(0.05);
*/
estimate("OLS", 1954, 2, 1992, 3, 8);
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dynamics();

The model is listed first, and the GUM commented out. CONS 1 4:5 is shorthand
for CONS 1, CONS 4, CONS 5.

To rerun the Autometrics model selection:
module("PcGive");
package("PcGive", "Single-equation");
usedata("data.oxdata");
system
{

Y = CONS 0:5;
Z = INC 0:5, INFLAT 0:5, OUTPUT 0:5, Seasonal 0:2, Trend;
U = Constant;

}
autometrics(0.05);
estimate("OLS", 1954, 2, 1992, 3, 8);

As another example, we could add some algebra code to create DCONS and DINC,
replace CONS and INC in the model by the first differences, and estimate the model as:

package("PcGive", "Single-equation");
usedata("data.oxdata");
algebra
{

DCONS = diff(CONS, 1);
DINC = diff(INC, 1);

}
system
{

Y = DCONS;
Z = Constant, CONS_1, DINC, INC_1, INFLAT;

}
estimate("OLS", 1953, 2, 1992, 3, 8);

Press Run to execute the batch file. Saved batch files have the .fl extension, which
originally stood for Fiml Language.

As a last example, use Test/Further Output to write the non-linear model code.
Then activate Model/Non-linear modelling to re-estimate the model using NLS. Finally,
activate the Batch editor in OxMetrics. Again, an outline batch file has already been
written by OxMetrics:

package("PcGive", "non-linear");
usedata("data.in7");
nonlinear
{

actual=DCONS;
fitted=&0 + &1*CONS[-1] + &2*DINC + &3*INC[-1] + &4*INFLAT;
// starting values:
&0=-18.52; &1=-0.1909; &2=0.5067; &3=0.2102; &4=-0.9926;

}
estimate("NLS", 1953, 2, 1992, 3, 8);

module("PcGive");
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package("PcGive", "Single-equation");
usedata("DHSY.in7");
system
{

Y = LC;
Z = LC 4, LY 0:1 4:5, D4LPC, DI#1972(1), DI#1973(4);

}
/* Derived by Autometrics from GUM:
system
{

Y = LC 0:5;
Z = Constant, LY 0:5, D4LPC 0:5, Seasonal 0:2;

}
autometrics(0.025, "DIS", 1);
*/
estimate("OLS", 1959, 2, 1975, 4);

Chapter A1 documents the PcGive batch commands for single equation modelling, and
gives a further example.

9.3 Generating and running Ox code
We start by rerunning the Autometrics model selection for the DHSY GUM, at the end
of Chapter 7. Then, in OxMetrics, select Model/Ox Batch Code:

The first choice offered is to generate the code for the most recent model, which
is self-evident. The remaining choices are to generate code for all estimated models
for any module that was run. Select most recent model, and the code is opened in
OxMetrics. If this is the first time you use it in this session, the file will be called
OxBatch 1.ox:

#include <oxstd.oxh>
#import <packages/PcGive/pcgive>

main()
{

//--- Ox code for EQ(57)
decl model = new PcGive();
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model.Load("C:\\Program Files\\OxMetrics9\\data\\DHSY.in7");
model.Deterministic(2);
// Allow for lagged seasonals
model.Grow(-model.GetFrequency());

model.Select("Y", {"LC", 0, 0});
model.Select("Y", {"LC", 4, 4});
model.Select("X", {"LY", 0, 1});
model.Select("X", {"LY", 4, 5});
model.Select("X", {"D4LPC", 0, 1});
model.Select("X", {"D4DV", 0, 0});
// Formulation of the GUM (commented out)

/*
model.DeSelect();
model.Select("Y", {"LC", 0, 0});
model.Select("X", {"Constant", 0, 0});
model.Select("Y", {"LC", 1, 5});
model.Select("X", {"LY", 0, 5});
model.Select("X", {"D4LPC", 0, 5});
model.Select("X", {"D4DV", 0, 0});
model.Select("X", {"Seasonal", 0, 2});
model.Autometrics(0.05, "none", 1);

*/
model.SetSelSample(1959, 2, 1975, 4);
model.SetMethod("OLS");
model.Estimate();
model.TestSummary();

delete model;
}

It is beyond the scope of this tutorial to explain the syntax of Ox. But a few points
are worth noting:

• The #import line imports the relevant PcGive components. The required header
and oxo files are installed in the OxMetrics9\ox\packages\PcGive folder, where
Ox will be able to find them. These files are part of PcGive Professional, and may
not be redistributed.

• The modelling object is called PcGive, which is derived from the Modelbase class.
• The path to the data file is hard coded. Because this data file is part of OxMetrics,

the following path, relative to OxMetrics9\ox, can be used:

model.Load("..\\data\\DHSY.in7");

• The model that is formulated corresponds to the final model. The GUM and Auto-
metrics call are commented out. This avoids having to rerun the automatic model
selection. Remove the /* and */ to include the Autometrics run.

• In this case the DV variable was generated using the Algebra file, and not in the
DHSY dataset (unless the changes were saved). The following code creates ∆4DV
for the Ox code:

model.Append(model.GetVar("D6812") + model.GetVar("D7312"), "DV");
model.Append(diff0(model.GetVar("DV"),4), "D4DV");
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Remember that you can pu the text cursor on a word in the Ox code, and then press
F1 for context sensitive help.

• For Ox Batch code generation other than the most recent model, the estimated mod-
els are in separate functions, as follows:
#include <oxstd.h>
#import <packages/PcGive/pcgive_ects>

run_1()
{

// ...
}
run_2()
{

// ...
}
main()
{

run_1();
run_2();

}

The completed program is included in the batch folder as DHSY.ox, and can be
run as any other Ox program. More information on Ox programming and running Ox
programs can be found in Doornik and Ooms (2006) and the Ox documentation.
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Non-linear Models

10.1 Introduction

The emphasis of this book is mainly on interactive econometric modelling, primarily
using OLS or IVE. However, the non-linear modelling option allows for a wide class
of additional models to be estimated. In the remainder of this chapter we shall fo-
cus on advanced estimation, using the non-linear model option. Both time-series and
cross-section examples will be considered. We assume you are familiar with preceding
tutorials, especially with the material in Chapters 3 and 8. Note that all models in this
chapter can also be estimated using the appropriate packages (discussed in Volume III).
This would be more robust, and often gives additional flexibility. However, for teaching
purposes, it is often useful to also implement the model using the non-linear modelling
option.

10.2 Non-linear modelling

Several examples of non-linear least squares estimation were given in Chapter 8. In
particular, we saw that a linear model can be set up as a non-linear model, but that
direct estimation by OLS is much more efficient. Estimating NLS models confronted
us with some of the potential problems of estimating non-linear models:
1. choosing bad starting values;
2. multiple optima;
3. for recursive NLS: RSS which is not monotonically increasing with sample size;
4. optima which are hard to locate, maybe resulting in failure to converge;
5. choosing a ‘difficult’ parametrization (for example, maximizing a concentrated like-

lihood might be easier than the original likelihood).
We can add to that:
1. programming errors, as we have to program the function ourselves (just try revers-

ing the sign of the ‘loglik’ function);

110
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2. reaching a region of the parameter space where the function is not defined (such as
taking the logarithm of a negative number);

3. failure to compute numerical first derivatives (these are essential for finding an up-
ward direction);

4. upon convergence: failure to compute numerical second derivatives (these provide
standard errors);

The following four precautions could make the difference between a diverging and
converging estimation:
1. scale the parameters, so that they fall between 0.1 and 1 (as a rule of thumb: scale

the explanatory variables to be in the range 0.1–1);
2. find good starting values, maybe solving a closely related problem which can be

estimated by OLS;
3. use a careful implementation, e.g. take the absolute value (or square) of parameters

that must be positive (such as variances);
4. in case of divergence, estimate first with fewer parameters.
All these problems have to be taken into account, making non-linear estimation an
option for the advanced user. But it is a powerful feature, and a lot of fun to experiment
with. Many examples are given below.

Sometimes we can show that the log-likelihood is concave, in which case there is
only one maximum. This makes it easier to locate the maximum, and if we find one,
we know that it’s the only one. Some things can still go wrong, in the case where the
starting values are too far away from the maximum, or when reaching an area where the
function is numerically flat. Numerical issues must be considered throughout: e10000

does exist, but our computer cannot handle such a large number.

10.3 Maximizing a function
The second non-linear estimation method (following NLS) is called ML, which stands
for maximum likelihood. This option maximizes a function of the parameters. This
does not need to be a likelihood function. Consider, for example, minimizing the so-
called Rosenbrock function (see Fletcher, 1987):

f(α, β) = 100 ∗
(
β − α2

)2
+ (1− α)2 .

No data are involved. It is easily seen that the minimum is at (1, 1) with function
value 0. The contours are rather banana-shaped. To estimate, create a database of just
two observations in OxMetrics; in that database create a variable with two non-missing
values. Then in OxMetrics select Other models/Non-linear Modelling and load the
tutorial file TutRosen.alg:
actual=1; fitted=1;
loglik= -100 * (&2 - &1^2)^2 - (1 - &1)^2;
&1=0; &2=0;

The variables labelled ‘actual’ and ‘fitted’ are required by PcGive, but serve no other
purpose here (they are used in the graphic analysis). The ‘loglik’ variable is summed
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over the sample size, and this sum is minimized. Non-linear modelling requires us
to provide starting values, here we choose zero. Accept, select Non-linear estimation

(dialog), accepting the default sample size of two observations. This leads to the Non-

linear Estimation dialog; the top line says ‘Press Estimate to start iterating’, because
the maximization has not started yet. Push the Estimate button, leading to convergence
quickly (the message changes to ‘Strong convergence’). Choosing OK gives the output:
EQ( 4) Modelling actual by ML (using Data3)

The estimation sample is: 1 to 2

Coefficient Std.Error t-value t-prob
&1 0.999999 0.5000 2.00 0.000
&2 0.999999 1.001 0.999 0.000
loglik = -9.172049474e-013 for 2 parameters and 2 observations

Standard errors based on numerical second derivatives
BFGS/warm-up using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence

The output also has a message ‘Warning: invertgen: singular matrix’, which you
can safely ignore here.

10.4 Logit and probit estimation
A discrete choice model is one where the dependent variable is discrete, and denotes a
category. In this section we use this type of model to do maximum likelihood estimation
in PcGive. Note that these types of models are also directly available in PcGive, see
Volume III (Doornik and Hendry, 2013a). Examples of categorical dependent variables
are:

yi = 0 if household i owns no car,
yi = 1 otherwise,

or
yi = 0 if individual i travels to work by car,
yi = 1 if i travels to work by bike,
yi = 2 otherwise.

The first example is a binary choice problem (two categories), the second is multino-
mial. Here we restrict ourselves to the former: the dependent variable is a dummy. With
a discrete dependent variable, interest lies in modelling the probabilities of observing a
certain outcome. Write

pi = P {yi = 1} .

To illustrate this method we use the data from Finney (1947), provided in the
files Finney.in7 and Finney.bn7. This data set holds 39 observations on the oc-
currence of vaso-constriction (the dummy variable, called ‘vaso’) in the skin of the
fingers after taking a single deep breath. The dose is measured by the volume of
air inspired (‘volume’) and the average rate of inspiration (‘rate’). Load the data
set into PcGive. A graphical inspection is provided by Figure 10.1. Figure 10.1(a)
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Figure 10.1 Finney’s data

shows a cross-plot of volume and rate by vaso; a 1 indicates the occurrence of vaso-
constriction. This graph suggests that response is determined by the product of rate
and volume. The next graph uses log(rate) and log(volume). The point inside the
circle appears to be an outlier. The data are taken from the table in Finney (1947),
which has a typing error for observation 32. The correct value is (presumably) 0.3
instead of 0.03 (0.3 corresponds to the graph in the paper). The straight line in Fig.
10.1(c) shows what regressing vaso on log(volume) would lead to; the hand-drawn line
shows a better approach, corresponding to a cumulative distribution function. Apply-
ing the straight line (that is, OLS) has several disadvantages here. First, it doesn’t
yield proper probabilities, as it is not restricted to lie between 0 and 1 (OLS is called
the linear probability model: pi = x′

iβ). Secondly, the disturbances cannot be nor-
mally distributed, as they only take on two values: ϵi = 1 − pi or ϵi = 0 − pi.
Finally, they are also heteroscedastic: E[ϵi] = (1 − pi)pi + (0 − pi)(1 − pi) = 0,
E[ϵ2i ] = (1− pi)2pi + (0− pi)2(1− pi) = (1− pi)pi.

A simple solution is to introduce an underlying continuous variable y∗i , which is not
observed. Observed is:

yi =

{
0 if y∗i < 0,

1 if y∗i ≥ 0.
(10.1)

Now we can introduce explanatory variables:

y∗i = x′
iβ − ϵi.

and write
pi = P {yi = 1} = P {x′

iβ − ϵi ≥ 0} = Fϵ (x
′
iβ) .
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Observations with yi = 1 contribute pi to the likelihood, observations with yi = 0

contribute 1− pi:
L (β | X) =

∏
{yi=0}

(1− pi)
∏

{yi=1}

pi,

and the log-likelihood becomes:

ℓ (β | X) =

N∑
i=1

[(1− yi) log (1− pi) + yi log pi] .

The choice of Fϵ determines the method. Using the logistic distribution:

Fϵ (z) =
ez

1 + ez

leads to logit. Logit has a linear log-odds ratio:

log

(
pi

1− pi

)
= x′

iβ.

The standard normal gives probit. As we can multiply y∗i by any non-zero constant
without changing the outcome, the scale of these distributions is fixed: the logistic has
variance π2/3, the standard normal has variance equal to 1. The corresponding Algebra
code for our application is:
actual = vaso;
xbeta = &0 + &1 * Lrate + &2 * Lvolume;
fitted = 1 / (1 + exp(-xbeta));
loglik = actual * log(fitted) + (1 - actual) * log(1 - fitted);
// starting values:
&0 = -0.744; &1 = 1.346; &2 = 2.303;

and for probit:
actual = vaso;
xbeta = &0 + &1 * Lrate + &2 * Lvolume;
fitted = probn(xbeta);
loglik = actual * log(fitted) + (1-actual) * log(tailn(xbeta));
// starting values:
&0 = -0.465; &1 = 0.842; &2 = 1.439;

The starting values for both problems were obtained from an OLS regression of
vaso on a constant, Lrate and Lvolume, and then transforming the parameters following
Amemiya (1981) as:

constant rest
logit 4 (αOLS − 0.5) 4βOLS

probit 2.5 (αOLS − 0.5) 2.5βOLS

First estimate the binary logit model: load the Finney data set in OxMetrics, in
PcGive type Alt+m,l to activate Model/Non-linear modelling. Change database to
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finney.in7, then load TutLogit.alg, accept (if you get the message ‘vaso not found in
database’ you forgot to change to the finney database) and accept again. In the Non-

linear estimation dialog press Estimate to start estimating, and OK to accept the result
after convergence. The results are:
EQ( 1) Modelling actual by ML (using Finney.in7)

The estimation sample is: 1 - 39

Coefficient Std.Error t-value t-prob
&0 -2.87555 1.321 -2.18 0.036
&1 4.56176 1.838 2.48 0.018
&2 5.17939 1.865 2.78 0.009
loglik = -14.61368766 for 3 parameters and 39 observations

Standard errors based on numerical second derivatives
BFGS/warm-up using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence
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Figure 10.2 Log-likelihoods, probabilities and outcomes for the logit model

A graphic analysis which will use the variables ‘actual’ and ‘fitted’ as we defined
them is not so interesting here. Better is Figure 10.2. Select Test/Store in database,
expand non-linear estimation, click on click on select, and select fitted in the drop-
down list. In OxMetrics, rename fitted to plogit. Repeat the same procedure for loglik,
renaming it to liklogit. Next, switch to OxMetrics and graph vaso, plogit and liklogit.
This graph looks different from 10.2, which is sorted by ‘liklogit’. This is achieved by
sorting the whole database by the ‘liklogit’ variable using Algebra; enter:
index = trend();
_sortallby(liklogit);
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in the Algebra editor and execute. The index variable allows us to undo the sorting op-
eration (but a more simple method is to use the Undo button in OxMetrics). The ‘plogit’
variable is pi, whereas ‘liklogit’ is the log-likelihood contribution of observation i: the
log of the probability of being in the observed state. Ideally, we predict a probability
of one, corresponding to a likelihood of 0. So as we move from left to right, the ‘fit’
improves. From the top part of the graph we see that if for pi > 0.5 we would classify
the outcome as a 1, then the misclassifications are on the left.

To see whether the typo in observation 32 matters much, move it to the end of the
database through:
deselect = (index == 32);
_sortallby(deselect);

deselect will be 1 for observation 32 and 0 otherwise, and sorting all variables by des-
elect moves number 32 to the bottom. Do a logit model over the sample 1–38: there is
hardly any difference at all.

The index variable corresponds to the original observation index, so to restore the
original order in the database, execute:
_sortallby(index);

and turn to the probit estimation using TutProbit.alg:
EQ( 2) Modelling actual by ML (using Finney.in7)

The estimation sample is: 1 - 39
Coefficient Std.Error t-value t-prob

&0 -1.50440 0.6375 -2.36 0.024
&1 2.51233 0.9365 2.68 0.011
&2 2.86200 0.9081 3.15 0.003
loglik = -14.64353075 for 3 parameters and 39 observations

Although the coefficients of logit and probit are quite different, this is mainly ow-
ing to the choice of scaling parameter. It is more useful to compare probabilities (or
derivatives of probabilities with respect to explanatory variables). Sorting the database
again, and combining logit and probit results, gives Figure 10.3. Here we see that the
differences between the results are very small indeed: there is no reason to prefer one
over the other (also see Chambers and Cox, 1967).

As an illustration of the possibilities and drawbacks of PcGive’s ML option we
did a multinomial logit with 4 states (numbered 0,1,2,3), 1700 observations and 24
parameters. The probabilities of observation i to be in state j are defined as:

pij =
ex

′
iβj∑3

j=0 e
x′
iβj

, j = 0, . . . , 3, with β0 = 0.

The code rearranges this somewhat, to provide a numerically more stable calculation,
see MNLOGIT.ALG. On a 90 Mhz Pentium this takes 10 minutes to converge (with
strong convergence tolerance of 0.001), plus nearly 5 minutes to evaluate the variance
numerically. When using the Limited dependent package within PcGive, which em-
ploys Newton’s method with analytical first and second derivatives convergence takes
4 seconds. Most of the penalty comes out of having to evaluate the algebra code over
and over again, rather than being able to use the hard-coded function.
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Figure 10.3 Comparison of the probit and logit models

10.5 Tobit estimation
In the standard tobit model (see, for example, Amemiya, 1985, Chapter 10, or Cramer,
1986, Chapter 11), the observations on the dependent variable are censored: the positive
values are observed, but instead of negative values, we see only zeros. The analogue to
(10.1) is:

yi =

{
0 if y∗i ≤ 0,

y∗i if y∗i > 0,

using
y∗i = x′

iβ + ϵi, with ϵi ∼ IN
(
0, σ2

)
.

Now P{y∗i ≤ 0} = P(x′
iβ + ϵi ≤ 0) = 1 − Fϵ(x

′
iβ) (Fϵ is symmetric). The log-

likelihood can be seen to consist of a probit part and an OLS part:

ℓ (β | X) =
∑

{yi=0}

log (1− Fϵ (x
′
iβ)) +

∑
{yi>0}

log (fϵ (yi − x′
iβ)) .

Using (14.102):

ℓ (β | X) =
∑

{yi=0}

log (1− Fϵ (x
′
iβ)) + c+

∑
{yi>0}

[
log
(
σ−1

)
− 1

2

(yi − x′
iβ)

2

σ2

]
Write Φ for the standard normal cdf:

1− Fϵ(x
′
iβ) = 1− Φ (x′

iβ/σ) .



118 Chapter 10 Non-linear Models

Using the indicator function I(·) to indicate whether the outcome was observed,
ℓi(β|xi), the likelihood for individual i may be written as:

I (yi = 0) log [1− Φ (x′
iβ/σ)] + I (yi > 0)

[
1
2 log

(
σ−1

)
− 1

2 (yi/σ − x′
iβ/σ)

2
]
.

It is convenient to scale by σ, writing α = β/σ, so that ℓi(α|xi) is:

I (yi = 0) log [1− Φ (x′
iα)] + I (yi > 0)

[
1
2 log

(
σ−1

)
− 1

2 (yi/σ − x′
iα)

2
]
.

The data set is TutTobit.in7, which holds data on expenditure on clothing for 150
individuals, with income and age. In algebra code, the likelihood is expressed as (the
code is given in the file TutTobit.alg):
actual = expen; // y
fitted = &0 + &1 * inc/1000 + &2 * age/10; // x’alpha
loglik = (actual <= 0)

? log( max(1.e-20, tailn(fitted)) ) // probit part
: log(fabs(&3)) - 0.5 * (actual * fabs(&3) - fitted)^2;

&0=-3.3; &1=1.3; &2=2.3; &3=0.022; // starting values
fitted = fitted/&3;// undo scaling, fitted is no longer needed

First of all, scaling of the parameters is important, preferably so that they fall be-
tween 0.1 and 1. Without that, the numerical derivatives are much more likely to fail.
Also use good starting values (here based on OLS). Secondly, &3 is σ−1, and the re-
maining parameters estimate α = β/σ. More importantly, we take the absolute value
of &3, reducing the singularity to a small region around 0. Consequently, it is possi-
ble to find a negative value for &3; in that case restart at the optimum, but with the
absolute value of &3, which converges immediately. Finally, we don’t allow 1− Fϵ to
get smaller than 10−20. This helps with bad starting values, but should not make any
difference close to the optimum.

The starting values were found from a full-sample OLS estimation:
Coefficient Std.Error t-value t-prob Part.R^2

Constant -151.482 48.56 -3.12 0.002 0.0621
inc 0.0608239 0.01710 3.56 0.001 0.0792
age 10.4385 3.113 3.35 0.001 0.0711

sigma 46.3493 RSS 315793.427
R^2 0.23024 F(2,147) = 21.98 [0.000]**

So: &0 = −151.48/46.3439, &1 = (1000 × 0.060824)/46.3439, &2 = (100 ×
10.439)/46.3439, &3 = 1/46.3439.

The final results are (make sure you use the full sample of 150 observations):
EQ( 3) Modelling actual by ML (using TutTobit.in7)

The estimation sample is: 1 to 150

Coefficient Std.Error t-value t-prob
&0 -4.78177 1.207 -3.96 0.000
&1 1.27797 0.4053 3.15 0.002
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&2 2.67282 0.7653 3.49 0.001
&3 0.0122297 0.001167 10.5 0.000
loglik = -374.9303539 for 4 parameters and 150 observations

Figure 10.4 gives a plot of the fitted values from the Tobit model and from OLS
in the upper half, and expenditure in the lower half (both after sorting the database by
expenditure, and for the same expenditure, by income).
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Figure 10.4 Comparison of fitted values from OLS and Tobit

10.6 ARMA estimation

Here we fit a model to generated ARMA(2, 2) and in the next section to ARCH data.1

First run the batch file TutArma.fl in OxMetrics:
database("tutarma", 1, 1, 120, 1, 1);
algebra
{

ranseed(-1);

eps = rann();
arma22 = -1.4 * lag0(arma22,1) - 0.5 * lag0(arma22,2) + eps

- 0.2 * lag0(eps,1) - 0.1 * lag0(eps,2);
arch = sqrt(1 + 0.6 * lag0(arch,1)^2) * eps;
// discard the first 17 observations

1Note however, that ARMA models can be estimated directly under Models for time-series

data/ARFIMA models and X12ARima, and GARCH models under Models for financial data

using G@RCH or PcGive.
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arma22 = insample(1, 1, 17, 1) ? MISSING;
arch = insample(1, 1, 17, 1) ? MISSING;

}

The lag0 function sets missing lags to zero, whereas lag sets them to missing values
which then propagate through the sample. This batch file creates a database of 103
observations on an ARMA(2, 2) and an ARCH process (the first 17 observations are
discarded).

For the ARMA(2, 2) model

yt = θ0yt−1 + θ1yt−2 + ϵt + θ2ϵt−1 + θ3ϵt−2,

we can use NLS to mimimize the conditional sum of squares (CSS):

T∑
t=3

(yt − θ0yt−1 − θ1yt−2 − θ2ϵt−1 − θ3ϵt−2)
2

with ϵ1 = ϵ2 = 0. This treatment of the initial disturbances simplifies the estimation
procedure. Exact maximum likelihood estimation requires specifying the distribution
for the initial observations and disturbances. See Box and Jenkins (1976) or Harvey
(1993) among others.
The code for estimating the ARMA(2, 2) model is given in TutArma.alg:
actual = arma22;
fitted = (lag(actual,2) != MISSING)

? &1*lag(actual,1) + &2*lag(actual,2)
+ &3*(lag(actual,1) - lag(fitted,1))
+ &4*(lag(actual,2) - lag(fitted,2))

: actual;
// starting values:
&1 = -1.4; &2 = -0.5; &3 = -0.2; &4 = -0.1;

Algebra is a vector language: each line can be interpreted as having an observation
loop around it. This enables us to define ‘fitted’ recursively: when computing ‘fitted’ at
time t, the value at t− 1 already exists. But we have to be careful, as this doesn’t work
for t = 1 and t = 2 where the second lag of ‘fitted’ cannot exist. The work-around is the
conditional statement: in those two cases we assign the observed value, corresponding
to a residual of zero. The final line gives the starting values. These lines can occur any-
where in the code, but are executed when the code is analyzed for errors, so before the
proper algebra statements are executed. The syntax is restricted to ‘parameter=value;’,
as used in the code. In pseudo language the code can be interpreted as:

initialize θ̂0 = −1.4, θ̂1 = −0.5, θ̂2 = −0.2, θ̂3 = −0.1;
set actual, fitted to missing for the whole database period;

statement 1 for t = T1, . . . , T2: actual ← yt;

for t = T1, . . . , T1 + 2: fitted (ŷt) ← yt;

statement 2 for t = T1 + 3, . . . , T2: fitted (ŷt)← θ̂0yt−1 − θ̂1yt−2−
θ̂2 (yt−1 − ŷt−1)− θ̂3 (yt−2 − ŷt−2) .
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T1, . . . , T2 is the sample used for estimation, and the result is that the first three ϵs in
that sample are zero.

Estimation from observation 18 gives (remember that information criteria, etc. are
switched off by default):

Coefficient Std.Error t-value t-prob Part.R^2
&1 -1.04199 0.2141 -4.87 0.0000 0.1930
&2 -0.247247 0.1941 -1.27 0.2056 0.0161
&3 -0.512380 0.2236 -2.29 0.0241 0.0504
&4 0.246328 0.1511 1.63 0.1063 0.0261

sigma 0.842338 RSS 70.2438791
R^2 0.900425 log-likelihood -126.439
no. of observations 103 no. of parameters 4
mean(actual) -0.00562736 se(actual) 2.66923

Standard errors based on information matrix
BFGS/warm-up using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence
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Figure 10.5 Graphical analysis of ARMA(2,2) model

Graphic analysis is based on the ‘actual’ and ‘fitted’ values, with the residuals defined as the
difference, see Figure 10.5. Tests are also available:

AR 1-2 test: F(2,97) = 0.14744 [0.8631]
ARCH 1-1 test: F(1,101) = 0.18554 [0.6676]
Normality test: Chi^2(2) = 3.7790 [0.1511]
Hetero test: F(8,92) = 0.79145 [0.6114]
Hetero-X test: F(14,86) = 0.78331 [0.6842]

Tests that require an auxiliary regression use the derivatives of ‘fitted’ with respect to
the parameters evaluated at the optimum, see §19.5.10.
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10.7 ARCH estimation

Specify an ARCH(q) model as:

yt = x′
tβ + ut, with ut = σtϵt, and σ2

t = α0 +

q∑
j=1

αju
2
t−j .

See, for example, Engle (1982) or Bollerslev, Chou, and Kroner (1992). Assuming ϵt ∼
IN(0, 1) gives ut|ut−1 · · ·ut−q ∼ N(0, σ2

t ). So conditional on the past, the model is
normal but heteroscedastic. The log-likelihood for observation t follows from (14.103)

ℓt (θ|It−1) = c− 1
2 log

(
σ2
t

)
− 1

2

(yt − x′
tβ)

2

σ2
t

.

Fitting an ARCH(1) model to the generated data, with only a constant in the mean (that
is, the only x is the intercept), is achieved by formulating (see TutArch.alg):
actual = arch;
fitted = &0;
res = actual - fitted;
condv = fabs(&1 + &2 * lag(res,1)^2);
loglik = -0.5 * (log(condv) + res^2/condv);
&0 = -0.05; &1 = 1.47; &2 = 0.56; // starting values

with β0 = &0, α0 = &1, α1 = &2. The fabs() function takes the absolute value of its
argument. This forces the variance to be positive, and improves the numerical behaviour
of the optimization process considerably. The starting values are the coefficients from
the ARCH test on the residuals from regressing the arch variable on a constant. The
estimated model is, using 8 forecasts:
EQ( 3) Modelling actual by ML (using tutarma)

The estimation sample is: 19 - 112

Coefficient Std.Error t-value t-prob
&0 -0.0303475 0.1021 -0.297 0.767
&1 0.760838 0.1687 4.51 0.000
&2 0.543200 0.2150 2.53 0.013
loglik = -57.97159729 for 3 parameters and 94 observations

Standard errors based on numerical second derivatives
BFGS/warm-up using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence

Graphic analysis and some tests are available, but this is not very helpful here be-
cause of the definition of ‘actual’ and ‘fitted’: the latter is only a constant. The result is
that ARCH effects are not removed from ‘actual’–‘fitted’, as seen from the test:
ARCH 1-1 test: F(1,92) = 17.638 [0.0001]**
Normality test: Chi^2(2) = 16.413 [0.0003]**

More useful information is obtained from actual values yt/σ̂t and fitted values
x′
tβ̂/σ̂t. Re-estimate adding the following to lines at the bottom of the algebra code:
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actual = arch / sqrt(condv);
fitted = &0 / sqrt(condv);

The ARCH test has become insignificant:
ARCH 1-1 test: F(1,92) = 0.050393 [0.8229]
Normality test: Chi^2(2) = 0.40563 [0.8164]

Some graphical results are in Figure 10.6.
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Figure 10.6 Graphical analysis for ARCH model using scaled actual and fitted

As in the ARMA case, it makes a difference how the initial values are treated. In the
ARCH algebra code, the first observations in the estimation use a value determined as
actual–fitted when the algebra is run to determine the potential sample period, but left
untouched during estimation (the value used in this case is 1.4714). It could be fixed
by:

// loglik must already exist
condv = lag(loglik,1) != MISSING && lag(res,1) != MISSING
? fabs(&1 + &2 * lag(res,1)^2) : 1;

This finishes our discussion of non-linear estimation using PcGive. We are confident
that you can now experiment successfully with your own models.
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Chapter 11

An Overview

The purpose of Part III is to explain the concepts, models, methods and methodology
embodied in PcGive, and how to interpret its statistical and econometric output. For
completeness, we occasionally refer to the module for system modelling which is fully
described in Volume II, see Doornik and Hendry (2013b). The aim is to support the
learning of econometrics by using the software at a computer, applying methods to
data while learning about those methods. PcGive offers excellent facilities for learn-
ing econometrics at all levels from elementary courses, through intermediate stages to
advanced graduate standard. Its ease of use, menu interface and virtual uncrashability
make it a straightforward tool even for beginning economists and econometricians.

There are seven chapters on the econometrics of PcGive. First, we describe
elementary-level material needed by both economists and econometricians, including
notions of variation in data, the shape of distributions, measures of association, and time
dependence, leading up to dummy variables, collinearity and nonsense regressions. The
third ‘learning’ chapter is 13, which is at an intermediate level and considers the bulk
of the features offered by PcGive. It provides an introductory explanation of econo-
metrics, which also serves as a background to many of the features examined in the
tutorials. The discussion is intuitive and discursive, and although mathematics is used,
this is not at an advanced level. Topics addressed include linear dynamic models and
their interpretation, multiple regression and instrumental variables, an introduction to
modelling methodology and key econometric concepts, and diagnostic testing. Chapter
14 then describes the statistical theory of the normal distribution, of maximum likeli-
hood estimation and of least squares, linking that to regression analysis (a distinction
discussed shortly).

These chapters establish the main econometric tools, leading in Chapter 15 to an
overview of the approach embodied in PcGive to sustain efficient econometric mod-
elling. Chapter 16 considers nine important practical problems. The detailed discussion
of the actual statistics reported in PcGive is in Chapters 17–18, relating respectively to
data description and single-equation evaluation. As such, they are a reference to be used
as needed, rather than read throughout at a single sitting. Conversely, it is advisable to
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read Chapters 13–15 prior to using PcGive for substantive research. The detailed ta-
ble of contents is intended as a quick reference guide for locating explanations about
any results obtained. References to sections are denoted by chapter.section, for exam-
ple, §1.1, §2.4 etc. Equations are denoted by (chapter.number), for example, (12.17).
Finally, figures are shown as chapter.number, for example, Figure 13.2.

The philosophy underlying PcGive is that economic time-series data are generated
by a process of immense generality and complexity owing to the interacting behaviours
and conflicting objectives of millions of individuals. The outcomes produced by the
economic mechanism are measured with varying degrees of accuracy, but rarely per-
fectly, and sometimes not very well. The combination of the mechanism (the processes
of production, transaction and consumption) and the measurement system is called the
data generation process (DGP). The econometrician seeks to model the main features of
the DGP in a simplified representation based on a small set of observable variables usu-
ally related to prior economic theory. Since many important data features are inevitably
assumed absent in any economic theory, empirical models have to be developed inter-
actively to characterize the data while being consistent with the theory. For example,
a theory model might assume white-noise errors, whereas aggregation and the lack of
a mapping of theory-decision periods to data-observation intervals may mean that the
estimated model manifests substantial residual serial correlation (perhaps of a seasonal
form). Equally, the ‘deep’ parameters of the theory may correspond to model coeffi-
cients which are not empirically constant over time. PcGive is designed to facilitate
the process of model design, reveal problems with potential models, and test models to
highlight their strengths and weaknesses.

Current research suggests that an important component of any modelling exercise is
to estimate the most general model that it is reasonable to entertain a priori: see, for ex-
ample, Hoover and Perez (1999), and Hendry (2000a, Ch 20). Thus, PcGive facilitates
formulating general linear dynamic models, while still offering protection against the
possibility that the initial generality is in fact too specific to adequately characterize the
available data. This approach corresponds loosely to a constructive aspect of empirical
modelling. Both aspects of model construction and testing to destruction are analyzed
in Chapter 15.

Many econometrics packages focus on the estimation of economic models of vary-
ing degrees of complexity assuming that their qualitative characteristics are known be-
forehand, but the numerical values of their parameters need calibration from empirical
evidence. While estimation represents a necessary ingredient in econometrics research,
it is far from sufficient for practical empirical modelling. PcGive has been developed
to aid the process of discovering ‘good’ models by offering a wide range of evalua-
tion tools, some of which are sophisticated estimation methods reoriented to highlight
potential model weaknesses. There is no royal road to developing good models, but
some considerations which have proved helpful in related studies are discussed below,
including an analysis of the criteria by which empirical models might be judged. A
more extensive discussion is provided in Hendry (1993), Hendry (2000a) and Hendry
(1995a).
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Just as there is no ‘best’ way to drive a car, but many obviously bad ways (for exam-
ple, with your eyes closed), so there are many necessary, but no sufficient, conditions
for model validity. Delineating these necessary conditions, and analyzing the links be-
tween them, the available information and statistics for evaluating model adequacy is
the focus for the discussion in Chapter 15. Here, we begin with data description as the
first step towards mastering modern econometrics.

Hendry and Nielsen (2007) provide a useful alternative text book, complementing
the material here, and making extensive use of PcGive.



Chapter 12

Learning Elementary Econometrics
Using PcGive

12.1 Introduction

This chapter explains how to use OxMetrics and PcGive to introduce students to econo-
metrics, and as a complement to conventional elementary econometrics textbooks.
Chapters 15–18 of this manual will be referenced frequently as they have been struc-
tured to complement and extend the ideas in the present chapter.

The chapter assumes that the reader has sufficient knowledge to operate PCs run-
ning under Windows, and is familiar with OxMetrics/PcGive in terms of its menus,
mouse and keyboard. The Tutorials in Part II explain the mechanics of using the pro-
gram. On-line, context-sensitive help about the program usage and the econometrics
is always available. To load the data used in this chapter, access PCGTUT1.IN7 and
PCGTUT1.BN7.

The chapter is also designed to help instructors in teaching econometrics. It is
assumed that the instructor has prepared an appropriate data set in an .IN7 + .BN7
format: the PCGTUT data set used below is derived from data.in7, data.bn7. Also,
it is obvious that the teacher must have explained enough of the usage of PcGive and
the rudiments of Windows so that students can use the program. An overhead computer
projection panel can be linked to a PC for classroom displays. The authors have found
this to be an admirable and easy vehicle for illustrating econometrics concepts, models,
and methods at all levels. As PcGive is essentially uncrashable and models can be
formulated in batch files in advance of exercises as required, there is little risk of a
serious problem developing — and should the worst happen, it can be turned into a
salutory lesson on some of the real difficulties the students will face in undertaking
empirical research!

As an initial small data set, we have selected 30 observations on the two variables
cons and inc, which are artificial (computer-generated) data interpreted as aggregate
consumers’ expenditure and income in constant prices. First we view the data in the
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database, to see the numbers and determine their meaning, measurement, units and
sample period. The data are quarterly (four times per year) over 1986(1)–1993(2), and
the variables are in 100 log units. This means that the change between any two points in
time, say t to t+1, is approximately a percentage change: from 1993(1) to 1993(2), cons
increased by 3 units from 407.23 to 410.23, which is therefore a 3% increase. Working
back to the original units, divide by 100 and take antilogs (exponentials) to see that they
are around 60, which is £billions (per quarter). Since consumers’ expenditure must
be positive, it is safe to take logs; the scaling by 100 converts changes to percentages.
The reason for taking logs is to make economic time series more homogenous: back in
1900, consumers’ expenditure was under £1billion, so a £1billion change then would
have been 100% as against 1.5% in the 1980s.

12.2 Variation over time
Graphical inspection can highlight the salient features of the variables and reveal any
peculiarities in the data, such as typing, or recording, errors. Those in Figure 12.11 also
show the use of grid lines.
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Figure 12.1 Time-series graphs of cons and inc

The graph of cons and inc in Figure 12.1(a) reveals that they have gone through a
boom-recession-boom cycle, and have ended higher than the initial observations (about
16% and 18% higher in fact). Further, they show no obvious signs of seasonality (reg-
ular variation across the quarters of the year). Figure 12.1(a) plots cons and inc in their

1Multiple graphs are numbered from left to right and top to bottom, so (b) is the top-right
graph of four, and (c) the bottom left.
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original units, whereas Figure 12.1(b) matches them by means and ranges to maximize
their apparent visual closeness: this helps reveal whether or not the two series move in
the general way.

Now copy cons to a new variable, then revise the observation in 1987(1) from
401.41 to 301.41; it can be hard to notice this error in the database – and would be
very hard amongst 500 data points – but a glance at its graph makes such an error clear.
Remember to change the mistake back if you did not use a copy of cons.

Time-series graphs of the differences of, or changes in, each variable highlight the
periods of positive and negative growth and show any synchrony between the series.
Let ∆cons and ∆inc denote the changes from quarter to quarter (the Greek symbol
∆ is often used in that sense in econometrics). Figure 12.1(c) shows that changes in
these two series, unmatched, are clearly very close. Finally, Figure 12.1(d) plots the
difference inc–cons which is called sav (actually, this is 100 times the savings ratio).
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Figure 12.2 Histograms of cons and inc

12.3 Variation across a variable

It is also useful to summarize data in terms of their distributional shape and low-order
moments, and we illustrate this feature using the OxMetrics graphics. Click the graph-

ics option and select cons, inc and their changes, then select Distribution/Frequencies
as graph type. This leads to the outcomes in Figure 12.2(a)–(d). Here, there are too few
data points to make the shape of the distributions very clear other than near symmetry,
but we comment on several aspects in the next section.



12.3 Variation across a variable 133

Next, use descriptive statistics option in PcGive for the same four variables, and
mark means, standard deviations, and correlations to produce the outcomes (we return
to the correlations below). Since the data are in 100 logs, the standard deviations (s)
of (3.2, 4.9, 2.2, 3.6) are in percentages of the original levels of the variables. Thus,
the sample standard deviation is about 50% as large for the level as the change in cons,
and 30% larger still for the level of inc. Roughly 95% of a symmetric distribution lies
between x̄−2s and x̄+2swhere x̄ is the sample mean, so we might expect most changes
in cons to fall in the range −4 to +5 (all of them actually do). Note that the sample on
cons and inc is truncated by one observation when ∆cons and ∆inc are included.
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Figure 12.3 Histograms and densities for cons and inc

The formulae for the mean and standard deviation of a sample (x1 . . . xT ) of T
observations are:

x̄ =
1

T

T∑
t=1

xt and s =

√√√√ 1

T − 1

T∑
t=1

(xt − x̄)2.

The sample standard deviation is sometimes denoted by σ̂, where the ˆ shows that
it is estimated from the data, when the population value is σ, and is often calculated
by dividing by T rather than T − 1 (the degrees of freedom after removing the sample
mean). The latter is used in OxMetrics for the Print database info option when viewing
the database.
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12.4 Populations, samples and shapes of distributions

Next, we relate the sample of data that was observed to the population of possible
outcomes that might have occurred. We can use interpolated data densities to show the
underlying shapes of the distributions (the estimated density and histogram graph type).
As Figure 12.3 reveals, cons is unimodal and close to a normal distribution whereas
∆cons (the first difference) is nearer to a uniform distribution; inc and ∆inc are more
erratic – and the latter is nearly bimodal. The figure also shows other densities: the
seasonal (called seas) is clearly bimodal, with one bump much larger than the other,
and the trend is nearly uniform (can you explain these last two outcomes?).2
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Figure 12.4 QQ plots for cons and inc

The (cumulative) distribution function is one of the most basic concepts in prob-
ability, as it contains all the information about the probability behaviour of a random
variable. Plot these for the same six variables (note that the normal is plotted auto-
matically as well) and compare: the OxMetrics book discusses creating densities and
distributions for the standard statistical distributions. So-called QQ plots offer a picture
of the closeness to normality of a variable: those in Figure 12.4 show the transformed
cumulative distribution of the sample data with that for the normal (which is a straight
line). There are departures in the tails, but otherwise little evidence against normality.

2To create these indicator variables in the database, use the algebra code: one = 1; trend =
trend(); seas = season();. Note that they are automatically provided when estimating a model.
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12.5 Correlation and scalar regression

Figure 12.1(b) highlighted the common movements in the two series first shown in Fig-
ure 12.1(a) by plotting them with a standard mean and range. There are many possible
measures of co-movement, and correlation is a standardized measure of the closeness of
a linear relationship, constructed to lie between−1 and +1. We have already computed
a set of correlations above and these yielded the table shown below. All of them are
positive (increases in any one series are associated with increases – rather than falls –
in all of the others), and matching Figure 12.1, the correlation is higher between ∆cons
and ∆inc than between cons and inc. To understand the units (that is, when is a cor-
relation high?), cross plot the pairs of variables (cons,inc) and (∆cons,∆inc), first with
points, then with a line showing the correlation (four graphs in all) as in Figure 12.5.

cons inc Dcons Dinc
cons 1.0000
inc 0.64553 1.0000
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Figure 12.5 Scatter plots for cons and inc

We have used the on-screen edit facilities to map out the region in Figure 12.5(a)
into four quadrants using line drawing, placing the lines at the means of the variables
(402, 422). The positive co-movement is clear from the excess of points in the north-
east and south-west corners; a lack of correlation would be reflected by nearly equal
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numbers of points in each quadrant. Here we find the numbers of points to be:

Numbers of points for cons, inc
North-west

2

North-east
11

South-west
11

South-east
6

The preponderance of positively related points is clear. For (∆cons,∆inc) we have:

Numbers of points for ∆cons, ∆inc
North-west

4

North-east
13

South-west
12

South-east
1

matching the higher correlation.
The straight line shown in Figure 12.5(b) is defined by yt = a+bxt where yt denotes

the variable on the vertical axis (cons here) and xt is the variable on the horizontal axis
(i.e., inc). The point a (called the intercept) is where the line cuts the y-axis when
xt = 0 (namely, 0.25), and b is the slope (measured relative to the positive direction of
the x-axis). A unit change in xt is associated with a change of b in yt: Figure 12.5(d)
illustrates. Now, the closer all the points are to the line, the higher the correlation.

A natural question concerns why the line is drawn as shown, rather than some other
line. The answer is that we have picked ‘the line of best fit’ to the given data set. This
is defined by minimizing the squared deviations of the points from the line: the vertical
distances from the line are squared and summed and the values of a and b selected to
minimize that sum as shown on Figure 12.5(b). We must find:

min
a,b

T∑
t=1

(yt − a− bxt)2 .

The values that do so are given by the famous formula:

â = ȳ − b̂x̄ and b̂ =

∑T
t=1 (yt − ȳ) (xt − x̄)∑T

t=1 (xt − x̄)
2

, (12.1)

where the ˆ denotes that these are the best-fitting values, and ȳ and x̄ are the sample
means. A value of b̂ = 0 implies no slope, so the line is flat (that is, parallel to the
horizontal axis); â = 0 forces the line through the origin.

Of course, we could have had the variables in the other order (inc first then cons)
and that would have led to a different line: use the scatter plot facility to redraw the
figure with both lines of best fit (the second, steeper line, defined by xt = c + dyt).
The distance for the second line on the new figure is the horizontal distance, so it is
no surprise that the line is somewhat different as we are minimizing a different sum of
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squared deviations. Indeed:

ĉ = x̄− d̂ȳ and d̂ =

∑T
t=1 (xt − x̄) (yt − ȳ)∑T

t=1 (yt − ȳ)
2

. (12.2)

These two possible lines are closely related to the correlation coefficient, which we
denote by r:

r =

∑T
t=1 (xt − x̄) (yt − ȳ)√∑T

t=1 (xt − x̄)
2∑T

t=1 (yt − ȳ)
2
. (12.3)

From (12.1) and (12.2), it can be seen that b̂d̂ = r2. When r = 1 (or −1) the two lines
coincide; when r = 0, they are both parallel to their respective axes, so are at right
angles to each other.

Using PcGive, it is easy to calculate the outcomes from fitting the line shown in the
graph. The procedure is often called regression (somewhat loosely as we will see later).
Access the Cross-section regression option and select cons as dependent (yt) and inc as
explanatory (xt), leading to:

EQ( 1) Modelling cons by OLS (using PcgTut1.in7)
The estimation sample is: 1986 (1) to 1993 (2)

Coefficient Std.Error t-value t-prob Part.R^2
Constant 206.006 40.36 5.10 0.000 0.4820
inc 0.465140 0.09571 4.86 0.000 0.4576

sigma 2.58918 RSS 187.707974
R^2 0.457558 F(1,28) = 23.62 [0.000]**
log-likelihood -27.5054 DW 0.317
no. of observations 30 no. of parameters 2
mean(cons) 402.148 var(cons) 11.5347

The important information for the present is that the intercept (called Constant) is â =

206 and the slope b̂ = 0.465. The numbers denoted Std.Error are the standard errors,
or the standard deviations, of the estimated coefficients of the intercept and slope, so
±2× 0.09571 is an approximate 95% confidence interval around the central value b̂ =
0.4651. The symbol Rˆ2 is just the square of r = 0.676 and sigma (for σ̂) denotes the
standard deviation of the residuals about the line, where the residuals are:

ût = yt − â− b̂xt so σ̂ =

√√√√ 1

T − 2

T∑
t=1

û2t . (12.4)

Thus, the line is picked to yield the smallest value of σ̂. RSS denotes the residual sum
of squares, namely:

RSS =

T∑
t=1

û2t .

The symbol F is a test of whether the correlation is zero, and ∗∗ denotes that it is
definitely not (the probability is essentially zero of getting the value 23.62 for F when
r = 0 – shown as [0.0000]).
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The other statistics in the above results are the t-values and their probabilities, which
test if the coefficients are zero by seeing if the estimated coefficient’s 95% confidence
interval includes zero; and the PartRˆ2s which are the (squared) partial correlations of
each variable with the dependent variable, holding the remaining variables fixed, as
explained above. When there is a lot of ‘spreading’ of the explanatory power between
variables, the PartRˆ2s will be low even when the R2 value is high: this reveals that
the explanatory variables are substitutes rather than complements. Finally OLS is an
acronym from ordinary least squares, which is a synonym for regression in the present
context! We will return to explain the remaining information later.

The final issue is why â and b̂ have standard errors or standard deviations. This
happens because we view the data set as a sample from a much larger population that
might have occurred. Had another sample been drawn, different values for (â, b̂) would
result, and the standard errors measure how much variability might be expected on re-
peated sampling from the same population. Since the data here are computer generated,
it is easy to imagine drawing many other sets and plotting the distribution of the out-
comes as a density like that in Figure 12.3: the standard deviation of that density is the
coefficient standard error (Std.Error). Chapter 14 describes the theoretical analysis that
delivers the formula for calculating the standard error: note the magic – we actually
only have one sample, yet from that one sample, we can estimate how uncertain we are
about the values (â, b̂) that themselves estimate the intercept and slope of the line in the
population.

12.6 Interdependence

The concept of economic interdependence has already been illustrated by computing
the matrix of correlations between all of the variables. In many economic data sets, all
the correlations will be positive and many will exceed 0.9. This salient data feature is
discussed below: it raises obvious dangers of confusing ‘genuine’ correlations between
variables that really are connected with those that arise from the gradual evolution of
the whole economy. The correlations are smaller for the changes in the variables, and
this aspect will recur below as well. The formula in (12.3) explains part of the story,
writing r as:

r =
C (xt, yt)

s (xt) s (yt)
where C (xt, yt) =

1

T − 1

T∑
t=1

(xt − x̄) (yt − ȳ) . (12.5)

C (xt, yt) is called the covariance of xt with yt. Thus, the correlation coefficient is the
ratio of the covariance to the product of the two variables’ standard deviations. We know
from above that the standard deviations are smaller after differencing; the covariances
are as well, but fall by proportionately more owing to removing the ‘common’ trends
and cycles from the data. However, correlations could also increase on differencing if
(say) a trend masked opposite sign short-run correlations (see, for example, Hooker,
1901; this is a long-standing issue!).
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12.7 Time dependence

Correlations (or dependencies) between successive values of the same variable often
occur in economic time series. These are called serial (or auto) correlations. From
Figure 12.1, when cons was high, the next value was also high, and when low, so was
the next value. In general, we denote the current value of a variable by yt and its
previous (or lagged) value by yt−1. The difference is then ∆yt = yt − yt−1.
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Figure 12.6 Lagged scatter plots for cons and inc

Figure 12.1 also revealed that ∆cons jumped around considerably: high values were
not followed by other high values very often. By simple algebra, when ∆yt is indepen-
dent over time (so is not related to ∆yt−1), then yt ≃ yt−1 and hence yt is serially
correlated.

A useful way to see time dependence is to cross plot yt against yt−1, and ∆yt
against ∆yt−1 with a least-squares line (as in Figure 12.6). You may need to create the
lagged values using the calculator (shown as cons1 etc.). It is clear that cons and inc
are both highly correlated with their own lagged values (Figure 12.6(a) and 12.6(b)),
whereas ∆cons and ∆inc are nearly unrelated (horizontal regression lines).

This idea can be generalized to two-period relations, namely the correlation of yt
with yt−2. To summarize all such correlations at once, we plot a correlogram (or auto-
correlation function, ACF) with the correlations rj = corr(yt, yt−j) on the vertical axis
and j on the horizontal, illustrated for four terms (j = 1, . . . , 4) in Figure 12.7. This
idea relates back to the salient feature of serial dependence of the time-series graphs
of the variables in Figure 12.1, and provides a quantitative measurement of that aspect.
Here, the correlograms for cons and inc have several large positive terms, whereas those
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for ∆cons and ∆inc are nearly zero at all lags. The values of r1 reflect the slopes of
the plots in Figure 12.6. The horizontal dashed lines are rj ± 2SE for the estimated
autocorrelations, assuming the population value is zero: thus r1 is unlikely to be zero
for cons and inc.
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Figure 12.7 Sample ACF for cons and inc

We are in fact implicitly using regression, and can compute the slope coefficient
for yt on yt−1, called a first-order autoregression (‘regression on itself’), using that
method. Select the Single-equation dynamic modelling option for cons, choose one
lag, and accept to obtain (the last three lines are omitted):

EQ( 2) Modelling cons by OLS (using PcgTut1.in7)
The estimation sample is: 1986 (2) to 1993 (2)

Coefficient Std.Error t-value t-prob Part.R^2
cons_1 0.764263 0.1282 5.96 0.000 0.5684
Constant 95.2765 51.51 1.85 0.075 0.1125

sigma 2.13872 RSS 123.501614
R^2 0.568417 F(1,27) = 35.56 [0.000]**

By now the statistics should be becoming more familiar: the intercept is 95.28 and the
slope (i.e., the autoregressive coefficient) is 0.7643 which is approximately equal to the
autocorrelation of r1 = 0.754 (i.e., the square root of R2). The value of r1 is, therefore,
just that of the correlation coefficient calculated as in (12.3) for cons and cons1, and
shows the slope of the regression line in the graph of that variable against its lagged
value. Try to prove these connections for a first-order autoregression.

Returning to the correlogram {rj}, a new idea occurs: we know corr (yt, yt−1) and
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corr (yt, yt−2) but part of each of these may be owing to the other – can we sort out
the ‘net’ contributions of the one and two period lags? One notion might be to use the
residuals from the first-order autoregression and correlate these with yt−2; this approach
gets close, but on reflection, you can probably see that it takes out too much of yt−1 at
the first step (that is, it also takes out the bit of yt−2 in yt−1). We believe the easiest
way to understand the notion is to fit the regression of yt on both yt−1 and yt−2 which
is simple to perform in PcGive. Select the Single-equation dynamic modelling option
for cons again but this time choose two lags and accept to obtain:

EQ( 3) Modelling cons by OLS (using PcgTut1.in7)
The estimation sample is: 1986 (3) to 1993 (2)

Coefficient Std.Error t-value t-prob Part.R^2
cons_1 0.747621 0.2129 3.51 0.002 0.3304
cons_2 -0.0295917 0.2015 -0.147 0.884 0.0009
Constant 113.896 62.50 1.82 0.080 0.1173

sigma 2.20625 RSS 121.688116
R^2 0.490759 F(2,25) = 12.05 [0.000]**

The first slope coefficient is almost the same as that obtained when yt−1 alone was used,
and consistent with that, the second is close to zero. We learn that most of corr (yt, yt−2)

is due to the effect of yt−1, and no ‘net’ 2-period lag operates. This is important in un-
derstanding the pattern we observed in the correlogram. The generalization we have
developed is called the partial autocorrelation. The first slope coefficient shows the
change in yt from a change in yt−1 when yt−2 does not change: the second slope coef-
ficient shows the change in yt from a change in yt−2 when yt−1 does not change. Each
shows the net effect of its variable – together they show the total effect. A great ad-
vantage of regression methods is this ease of generalization to any number of variables,
where each coefficient measures the effects on the dependent variable of changing that
explanatory variable when all other variables are held fixed. Chapter 14 describes the
necessary algebra.

12.8 Dummy variables

Dummy variables are artificial creations with their non-zero values determined by us,
rather than by nature. They are often called indicator variables as they indicate the
presence of some state. We have already met three, namely the Constant, Trend and
Seasonal (where the first does not vary, so indicates the constant state!). The Seasonal
indicator variable (for non-annual data) is automatically created by PcGive to be unity
in the first period of the year and zero elsewhere. PcGive only needs one seasonal from
which the remaining seasonals for other periods are created by lagging: Seasonal 2 is
Seasonal two periods lagged, and so has a unity in the third period of each year. Using
the calculator or algebra, other dummies are easily created in a variety of forms for
impulse effects (a ‘blip’ which is zero except for perhaps a couple of quarters where it
is unity, often called a zero-one dummy); and step changes where the dummy is zero
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until a certain date and unity thereafter. Note that the scale of measurement of a dummy
is ordinal (‘on’ differs from ‘off’) in that the ‘on’ effect can bear any relation to the ‘off’.
It is dangerous to create a dummy which takes three or more values (for example, some
zeros, some unities and some twos) unless you are certain that the effect of the third is
twice that of the second. However, we will do just that – for a specific purpose. Use the
algebra to create the variable qrtr=period(); and using scatter plot, graph cons, inc
and qrtr (after Next choose graph, select two series by a third). The figure will show
the points as 1,2,3,4 depending on the quarter of the year, so the relation of cons to inc
in each quarter can be viewed. For the present data, the picture in Figure 12.8a is not
too informative, but see Davidson, Hendry, Srba, and Yeo (1978) for a clearer example.

Next, graph cons and the trend over time, match for mean and range; then also cross
plot them with the points joined; finally cross-plot them again, and insert a regression
line as in Figure 12.8. The first cross plot (Figure 12.8c) shows precisely the time-
series plot of cons; whereas the second cross plot shows the best-fitting trend line,
which clearly differs from that obtained by just matching means and ranges (which is
almost inevitably too steep).

Finally, note that a complete set of indicator variables is never needed (for example,
a dummy for ‘on’ and a second dummy for ‘off’) and is said to be perfectly collinear.
Try to compute a regression of cons on the quarterly seasonal with three lags: contrast
the outcome with what happens when you use only two lags, where a constant is always
included.
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Figure 12.8 Relating time series and cross-plots using dummy variables
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12.9 Sample variability

Histograms and densities showed the data variability; this section focuses on the vari-
ability in the sample statistics. Use the zoom sample check box to cross plot cons
against inc with a single regression line for the first half of the data only (to 1989(3)),
then for the second half only. Now redo the cross plot for the whole sample period
twice, but first fit two sequential lines then two recursive lines. The outcome is shown
in Figure 12.9. The regression lines for the two subsamples clearly differ in slope and
intercept, as Figure 12.9c makes clear (compute these numerically using the Single-

equation dynamic modelling option to check). Nevertheless, as Figure 12.9d reveals,
the first sample line is close to that obtained for the whole period.

Try fitting a number of sequential lines (four, for example) and consider the out-
come, perhaps using several trend lines, to show growth-rate changes. This exercise
should clarify the need to report coefficient standard errors.
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Figure 12.9 Changing regression lines

12.10 Collinearity

Perfect linear dependence was shown in §12.8 above; this item relates to ‘near linear
dependence’ between regressors – a more rigorous analysis is provided in §16.1. We
introduced multiple regression above using the example of partial autocorrelation, and
now use a finite distributed lag to show the effects of adding xt−1 to the regression of
yt on xt. This is called a distributed lag model because the lag coefficients on x show
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the distribution of the response of y over time (and when they are all positive, the coef-
ficients can be normalized to add to unity, and hence are like a probability distribution).
When xt is highly autoregressive, a large increase in coefficient uncertainty usually re-
sults as the ‘explanation’ of yt gets spread between xt and xt−1 rather than concentrated
on the former. Choose cons for yt and inc for xt and use the Single-equation dynamic

modelling option with one lag on inc to produce:

EQ( 4) Modelling cons by OLS (using PcgTut1.in7)
The estimation sample is: 1986 (2) to 1993 (2)

Coefficient Std.Error t-value t-prob Part.R^2
Constant 202.060 44.39 4.55 0.000 0.4435
inc 0.301206 0.1352 2.23 0.035 0.1602
inc_1 0.173896 0.1432 1.21 0.235 0.0537

sigma 2.46474 RSS 157.948781
R^2 0.448039 F(2,26) = 10.55 [0.000]**

The standard error of the coefficient of xt has increased by over 40% from the simple
regression: this effect is often called collinearity, and is viewed as deriving from the
high correlation between xt and xt−1 when both are used to explain yt.

At a somewhat more advanced level, instead of xt−1, add ∆xt to the regression of
yt on xt and consider the new output:

EQ( 5) Modelling cons by OLS (using PcgTut1.in7)
The estimation sample is: 1986 (2) to 1993 (2)

Coefficient Std.Error t-value t-prob Part.R^2
Constant 202.060 44.39 4.55 0.000 0.4435
inc 0.475102 0.1053 4.51 0.000 0.4392
Dinc -0.173896 0.1432 -1.21 0.235 0.0537

sigma 2.46474 RSS 157.948781
R^2 0.448039 F(2,26) = 10.55 [0.000]**

A glance establishes that all the regression statistics R2, s, F etc. are identical to the ear-
lier distributed lag estimates, and apart from the sign, so is the coefficient and standard
error of ∆inc. Only the coefficient and standard error of inc have altered (the former
to the sum of the coefficients in the distributed lag), both close to those found in the
simple regression of cons on inc. In fact, these last two models are actually equivalent,
as is easily seen algebraically:

d1xt + d2xt−1 ≡ (d1 + d2)xt − d2 (xt − xt−1) .

The differences in the standard errors between the two equivalent parametrizations
are owing to the relatively low correlation between xt and ∆xt, which must happen
when xt and xt−1 are highly correlated. This highlights the advantages of orthogonal
parametrizations (ones where explanatory variables are not correlated) where these are
feasible.

An alternative way to create collinearity is to add yt−1 to the regression of yt on xt;
again use cons and inc to obtain:



12.11 Nonsense regressions 145

EQ( 6) Modelling cons by OLS (using PcgTut1.in7)
The estimation sample is: 1986 (2) to 1993 (2)

Coefficient Std.Error t-value t-prob Part.R^2
cons_1 0.634611 0.09665 6.57 0.000 0.6238
Constant 16.5568 40.59 0.408 0.687 0.0064
inc 0.310060 0.06184 5.01 0.000 0.4916

sigma 1.55403 RSS 62.7904156
R^2 0.780575 F(2,26) = 46.25 [0.000]**

This time, despite the correlation between the explanatory variables, there is almost no
increase in the standard error of the coefficient of inc (in fact cons lagged and inc are
only correlated 0.27). Notice the counterbalancing effects of the improvement in fit
from the added variable against its interrelation with the previously-included variable.
Contrast the outcomes in this section with those found from (say) regressing ∆yt on
∆xt (or that with ∆yt−1 added).

12.11 Nonsense regressions

Even at an elementary level, a critical appreciation of econometric evidence is essential,
especially for time-series econometrics. The issue of invalidly ‘inferring causes from
correlations’ must be discussed: high (low) correlations do not by themselves confirm
(refute) causal links. Rather, theory-models with well-defined causality links can be
tested from data by checking on the presence and/or absence of certain correlations
predicted by those models. Models which fail must be rejected, or at a minimum re-
vised; models that are not rejected are consistent with the theory. This is a deductive
exercise. Rigorously-tested, yet acceptable, models are then used in later analytical
work, but causes are never inferred from correlations.

The most extreme cases of misleading correlations arise in what is known as the
nonsense regressions problem. From an early date, economists discovered high corre-
lations between what ought to be unrelated time-series variables and puzzled over these
(for example, a high positive correlation between the murder rate and membership of
the Church of England!: an early analysis is Yule, 1926, so again this is a long-standing
issue). We have regularly challenged our econometrics classes to select any two vari-
ables from a large data set (being careful to exclude dummies other than constant and
trend), and guarantee to produce a correlation of over 0.95 between the two chosen
variables after at most one transformation on each variable selected. If the variables are
trend free, we use the option to integrate (or cumulate) the two series chosen; otherwise
we take the (trending) series as selected. Now a cross plot, or even a time-series graph
with the ranges matched, shows the obviously high correlation, which can be confirmed
using the Descriptive statistics calculations. A similar effect is achievable by adding
trends to both series. In economics, one is unlikely to lose this challenge.

The underlying statistical problem was analyzed by Yule (1926) arising from either:
1. integrated, but mutually-independent, time series (nonsense regressions); or
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2. variables depending on common third factors (spurious regressions).
In the former, the high level of serial correlation in each series individually is sufficient
to ensure that it is highly correlated with other similarly integrated series; §13.2 presents
the relevant concepts. Hendry and Morgan (1995) trace the history of the analysis.3

The latter is more obvious, especially when both variables depend on a linear trend.
Econometrics is a powerful body of knowledge precisely because one can (for example)
predictably create nonsense regressions outcomes, as in Hendry (1980). Already we
have moved towards an intermediate level where we can apply PcGive to a further range
of topics. An exciting route lies ahead if you pursue the subject to a more advanced level
where you will learn how to detect, and hence counter, such problems (see e.g. Hendry,
1995a). This requires an investment in some econometric theory to understand both the
problems and their solutions, and Ch. 14 addresses that need.

3All the historical data sets used in their study, and that in Hendry (1995a) can be downloaded
in PcGive format from the web: www.nuff.ox.ac.uk/users/hendry.



Chapter 13

Intermediate Econometrics

13.1 Introduction

The level envisaged in this chapter corresponds to a course involving inter alia, the
properties of dynamic models, an introduction to unit roots and cointegration, model
types (see §13.2–§13.4), interpreting linear equations (§13.5), multiple regression
(§13.6, which builds on the algebra in Chapter 14), time-series concepts (§13.6.6),
instrumental-variables estimation (§13.8), and inference and diagnostic testing (§13.9),
leading on to model selection issues (§13.10).1 Throughout, the econometric theory
is to be illustrated by empirical applications which seek to highlight and explain how
to resolve some of the central problems of econometrics. As might be anticipated in
a book on a computer program, our emphasis is on practical procedures and solutions.
Chapter 16 is devoted to an analysis of the last of these; this section concentrates on the
other aspects. In fact, at an intermediate level where formal proofs are usually possi-
ble only for restrictive special cases (such as fixed regressors), Monte Carlo is almost
certainly a better adjunct to theory derivations than empirical examples.2 Nevertheless,
an easy-to-use regression package also has an important role for illustrating concepts,
methods and problems. To reiterate an earlier point, the discussion herein is intended
to complement, and not substitute for, formal derivations of estimators, tests and their
distributions. Chapter 14 provides the necessary background statistical material; an in-
troduction to the basic notion of fitting by least squares was provided in the previous
chapter.

1PcGive also provides multiple-equation software for empirically analyzing linear dynamic
systems, but the estimation and identification of simultaneous equations systems and vector au-
toregressions, including cointegration, as well as forecasting, are all considered in Volume II: see
Doornik and Hendry (2013b).

2PcNaive was released in 1991 as a Monte Carlo program specifically oriented to teaching
econometrics: see Hendry and Neale (1987), and Hendry, Neale, and Ericsson (1991). It is now
part of PcGive, and described in a separate volume, Doornik and Hendry (2022a).

147
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13.2 Linear dynamic equations

This section describes the forms of linear dynamic single equation models that occur
frequently in time-series econometrics. A typology of possible equation forms is then
analyzed in §13.4. Chapter 15 briefly generalizes the analysis to dynamic systems.
First, however, we need to introduce the idea of stationarity.

13.2.1 Stationarity and non-stationarity

A variable yt is said to be weakly stationary if its first two moments are finite and
constant over time, and its correlogram {rs} is finite and independent of t for all s. We
denote the expected value of yt by E[yt] and its second moment by E

[
y2t
]
, so these must

both be constant as a necessary condition to satisfy stationarity; otherwise the process
is non-stationary.

There are many reasons why economics variables (like inflation, income etc.) may
not be stationary (technical progress; policy regime changes etc.), which is bound to
make it difficult to model their behaviour, since their means and variances may change
from period to period. Thus, much econometric theory has assumed stationarity. If
that is not a realistic characterization of economic data, then any resulting empirical
analyses must be hazardous.

Consequently, recent effort has been devoted to developing models applicable to
non-stationary data: a recent discussion is Hendry and Juselius (2000). The analy-
sis below allows for some forms of non-stationarity, which we believe can be treated
in an intermediate-level course. Notice that the final section of the previous chapter
concerned one pernicious consequence of analyzing non-stationary processes as if they
were stationary.

13.2.2 Lag polynomials

The class of models basic to PcGive is that of linear dynamic equations. The analysis of
these follows from the use of a lag operator (denoted by L) such that Lrxt = xt−r for
any variable xt. Notice that a difference, such as ∆yt = yt−yt−1, becomes (1− L) yt.
More generally, scalar polynomials in L are denoted by:

d (L) = dmL
m + dm+1L

m+1 + · · ·+ drL
r =

n∑
r=m

drL
r,

where dm = 1 is often imposed to normalize the polynomial. Usually, m = 0 and
n ≥ 1, and we assume that in the following, with d0 = 1. The sum of the coefficients
is important and is denoted by d (1):

d (1) =

(
n∑

r=0

drL
r

)
⌋L=1

=

n∑
r=0

dr.
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Using the sum, the polynomial can be rewritten as (using n = 2 to illustrate, and
minimize the algebra):

d0 + d1L+ d2L
2 = (d0 + d1 + d2)− d1 (1− L)− d2 (1− L) (1 + L)

= d (1)− d∗ (L) (1− L) ,

where:
d∗ (L) = (d1 + d2) + d2L.

In general, we can always write:

d (L) = d (1)− d∗ (L)∆ (13.1)

which will prove important below.
Returning to dynamic models, the impact of d (L) on xt is given by:

d (L)xt =

n∑
r=0

drL
rxt =

n∑
r=0

drxt−r.

Lag polynomials like d (L) define autoregressions when the equation is of the form:

a (L) yt =

n∑
r=0

aryt−r = ϵt (13.2)

and ϵt is a serially-uncorrelated error (that is, white noise), often taken to be normal and
independently distributed, with mean zero and constant variance:

ϵt ∼ IN
[
0, σ2

ϵ

]
.

Alternatively, d (L) defines a finite distributed lag when the model has the form:

yt = b (L)xt + ϵt =

p∑
r=0

brxt−r + ϵt. (13.3)

The autoregressive-distributed lag (ADL) class is given by:

c (L) yt = b (L)xt + ϵt or
n∑

j=0

cjyt−j =

p∑
r=0

brxt−r + ϵt. (13.4)

Many different xs may be used conjointly if required in models like (13.4), in which
case the equation is written in a more convenient notation as:

b0 (L) yt =

k∑
i=1

bi (L)xit + ϵt (13.5)

when there are k explanatory variables (x1,t . . . xk,t). Of course, each xi,t will also
exhibit some autoregressive behaviour in general.
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13.2.2.1 Roots of lag polynomials

Many important properties of the dynamic model (13.4) are determined by the polyno-
mials a (L), b (L) and c (L). First, any polynomial of degree n has n (real or complex)
roots λi, and can be expressed as the product of its roots:

d (L) =

n∑
r=0

drL
r =

n∏
i=1

(1− λiL) . (13.6)

An important consequence of (13.6) is that:

d (1) =

n∏
i=1

(1− λi) . (13.7)

The values of the roots determine the dynamic properties of the variables. For example,
the model in (13.4) is a stable dynamic process if all the roots λi of the polynomial c (L)
satisfy |λi| < 1 (PcGive will calculate these roots).3 Equally, the process in (13.2) is
weakly stationary when all |λi| < 1 for a (L). However, if in (13.2), a root of a (L) is
equal to unity, then from (13.7) a (1) = 0 so a (L) = a∗ (L)∆, so that:

a (L) yt = a∗ (L)∆yt = ϵt,

and the first difference of yt is weakly stationary. Thus, yt itself is non-stationary, and
is said to be integrated of order 1, denoted I (1), as it needs to be differenced to remove
the unit root and become weakly stationary.4 We now have one case where a process is
non-stationary, but can be reduced to stationarity (here, by differencing).

13.2.2.2 Long-run solutions

Another important property, most relevant for c (L) in (13.4), is when c (1) ̸= 0, in
which case it is possible to solve for the long-run outcome of the process. From (13.4):

c (L) yt − b (L)xt = ϵt,

so that, using (13.1):

c (1) yt − b (1)xt = c∗ (L)∆yt − b∗ (L)∆xt + ϵt. (13.8)

When both ∆yt and ∆xt are stationarity, then E [∆yt] = µy and E [∆xt] = µx will be
constant over time. Thus, if we take the expectation of both sides of (13.8):

E [c(1)yt − b(1)xt] = E [c∗(L)∆yt − b∗(L)∆xt + ϵt] = c∗(1)µy − b∗(1)µx = K0,

3The actual roots of a (L) = 0 are the inverse of the {λi}, and the term root here is a
shorthand for eigenroot, where a (L) is viewed as a scalar matrix polynomial, for consistency
with eigenroots of dynamic systems below.

4If r roots of a (L) are equal to unity in absolute value, then yt is said to be integrated of order
r, denoted I (r), as it needs to be differenced r times to remove the unit roots.
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or:

E

[
yt −

b (1)

c (1)
xt −K0

]
= E [yt −K1xt −K0] = 0. (13.9)

Then (13.9) is the long-run average solution to (13.4). Clearly, (13.9) requires that
c (1) ̸= 0 in order to be well defined, and b (1) ̸= 0 to be non-trivial. In particular,
when (yt, xt) are jointly weakly stationarity, then we can also write (13.9) as:

E [yt] = K0 +K1E [xt] . (13.10)

If c (1) ̸= 0 and b (1) ̸= 0 in (13.4) when yt and xt are both I(1), yet
{yt −K1xt −K0} is I(0), then yt and xt are said to be cointegrated (the literature
is vast: see inter alia, Engle and Granger, 1987, Granger, 1986, Hendry, 1986a, Baner-
jee and Hendry, 1992, Banerjee, Dolado, Galbraith, and Hendry, 1993, Hendry, 1995a,
and Johansen, 1995): section 13.3 provides greater detail. Thus, cointegration is the
property that linear combinations of variables also remove the unit roots. The solution
in (13.9) remains valid in the cointegrated case. Section 13.4 assumes that xt is I(1) and
that yt and xt are cointegrated. Empirical evidence suggests that many economic time
series are better regarded as integrated process than as stationary.

13.2.2.3 Common factors

Thirdly, (13.4) has common factors (denoted COMFAC) if some of the roots of c (L)
coincide with roots of b (L). For example, when:

c (L) = (1− ρL) c∗ (L) = ρ (L) c∗ (L) ,

and at the same time:
b (L) = ρ (L) b∗ (L) ,

then (13.5) can be written as:

ρ (L) c∗ (L) yt = ρ (L) b∗ (L)xt + ϵt,

or dividing both sides by ρ (L):

c∗ (L) yt = b∗ (L)xt + ut where ut = ρut−1 + ϵt. (13.11)

The error {ut} is, therefore, an autoregressive process, and is generated from the com-
mon factor in the original lag polynomials c (L) and b (L) (see Sargan, 1980b, and
§13.4.7).

13.3 Cointegration
Once it is granted that economic time-series data are usually non-stationary, five issues
arise:
1. how important is the assumption of stationarity for modelling and inference?
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2. what are the effects of incorrectly assuming stationarity?
3. what are the sources of non-stationarity?
4. can the analysis be transformed back to one where stationarity is a valid assump-

tion?
5. if not, with what assumptions do we replace stationarity?

Essentially, the answers are ‘very’; ‘potentially hazardous’; ‘many and varied’;
‘sometimes, but it depends on the source of non-stationarity’; and ‘several possibili-
ties’. We expand on all of these below.

The issue in 1. was described under the heading of nonsense regressions in the
previous chapter: the absence of stationarity can be crucially important in some settings,
but matters less in others.

To answer 2., consider the following two simple random-walk processes:

∆yt = ϵt where ϵt ∼ IN
[
0, σ2

ϵ

]
(13.12)

∆xt = νt where νt ∼ IN
[
0, σ2

ν

]
(13.13)

setting y0 = 0, x0 = 0, with:
E [ϵtνs] = 0 ∀t, s. (13.14)

An economic equation of interest linking yt and zt is postulated to be:

yt = β0 + β1xt + ut (13.15)

where β1 is to represent the derivative of yt with respect to zt, namely:

∂yt
∂xt

= β1.

When estimated by OLS, equations like (13.15) implicitly assume {ut} is an IID process
independent of xt. A t-test of H0: β1 = 0, namely dividing the estimated coefficient by
the standard error:

tβ1=0 =
β̂1

SE
[
β̂1

] (13.16)

where:

β̂1 =

(
T∑

t=1

x2t

)−1 T∑
t=1

xtyt, (13.17)

is usually assumed to satisfy:

P (|tβ1=0| ≥ 2.0 | H0) = 0.05. (13.18)

In fact, serious over-rejection occurs using (13.18) with the conventional critical value
of 2.

Why does such a large distortion occur? First, because β1 is zero, then the model
implies that ut = yt: but from (13.12), yt has a unit root, so ut exhibits dramatic serial
correlation: this downwards biases the estimated standard error of β̂1, SE[β̂1], which
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is the denominator in (13.16). Secondly, and partly offsetting the first problem, β̂1 is
an unbiased estimator of β1, so E[β̂1] = 0, since the zt process is strongly exogenous,
and can be taken as given, despite its non-stationary characteristics. Thus, ‘on average’
the numerator is zero. Thirdly, the non-stationarity induced by cumulating past errors
causes the second moments of the data to grow much faster than in a stationary process
(which grows at the sample size T ). Instead, the processes in (13.28) and (13.29) grow
at a rate proportional to T 2, since at each point:

yt =

t∑
j=1

ϵj

Consequently, one might expect SE[β̂1] to decline very rapidly, because:

SE
[
β̂1

]
=

σ̂u√∑
x2t

= T−1 σ̂u√
T−2

∑
x2t
,

where the denominator is now ‘well behaved’. Unfortunately, the error variance is
simultaneously rapidly increasing in T . If we ignore the effect of estimating β1 and set
ût = ut, then:

σ̂2
u =

1

T − 2

T∑
t=1

u2t ≃ T

(
T−2

T∑
t=1

u2t

)
.

Thus, SE[β̂1] in fact decreases as 1/
√
T and so:

tβ1=0 =
β̂1

SE
[
β̂1

] ≃ √T β̂1.
The dispersion of β̂1 is huge: its actual variance V[β̂1] is extremely large, so although
the distribution is symmetric around zero, big positive and negative values both occur,
inducing many big t-values.

The importance of this result is twofold:
(i) Although β1 = 0, tβ1=0 diverges to infinity as T increases, and requires to be

standardized by 1/
√
T to yield a well-behaved limiting distribution;

(ii) The resulting limiting distribution is non-standard, so that conventionally-calculated
critical values are incorrect, even for the standardized distribution of tβ1=0/

√
T .

Consequently, processes with unit roots cannot be treated ‘as if’ they were stationary.
Concerning 3., there are many possible sources of non-stationarity, of which unit

roots are just one. Non-stationarity seems endemic in economic life: legislative change
is one obvious source of non-stationarity, often inducing structural breaks in time se-
ries, but it is far from the only one. We now consider a simple case where economic
behaviour might induce a root (see Hendry and Juselius, 2000). If changes to long-run
interest rates (Rl) were predictable, and Rl > Rs (the short-term rate) – as usually
holds, to compensate lenders for tying up their money – one could create a money ma-
chine. Just predict the forthcoming change in Rl, and borrow at Rs to buy bonds if you
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expect a fall in Rl (a rise in bond prices) or sell short if Rl is likely to rise. Such a sce-
nario seems unlikely, so, we anticipate E[∆Rl,t|It−1] = 0. As a model, this translates
into:

Rl,t = Rl,t−1 + ϵt (13.19)

where E[ϵt|It−1] = 0. The model in (13.19) has a unit coefficient on Rl,t−1, so as a
dynamic relation, has a unit root. The whole of ϵt influences Rl,t, and next period, the
whole of Rl,t influences Rl,t+1 so the effect of ϵt persists indefinitely, and hence past
errors accumulate with no ‘depreciation’. This induces an ever increasing variance to
the time series, violating stationarity.

The key development centers on 4.: transforming back to stationarity. One reason
unit roots have attracted so much interest is that facilitate that step, but in two ways
with very different implications. Most obviously, differencing removes a unit root and
returns to a stationary process: indeed, that is precisely the reverse of how we gen-
erated the non-stationarity in (13.12). The second transformation is not so obvious,
and requires a bit of explanation. Linear combinations of I(1) processes are usually
I(1) as well. It may happen that the integration cancels between series to yield an I(0)

outcome: this is called cointegration as we noted above. As a possible example, con-
sumption and income might be I(1) but saving (st = it−ct) could be I(0). Cointegrated
processes define a ‘long-run equilibrium trajectory’ for the economy, departures from
which induce equilibrium-correction mechanisms (EqCMs), which move the economy
back towards its path.5 Thus, linear combinations can also remove unit roots, and al-
low stationary inference (although the decision as to whether or not there is a unit root
remains non-standard).

There are many possible tests for cointegration, and we first consider tests based
on regression, when xt can be treated as weakly exogenous for the parameters of the
conditional model (see below, and e.g., Engle, Hendry, and Richard, 1983).6 Tests for
genuine links between variables must take account of the outcome when there are no
links. To check that a ‘nonsense regression’ has not been estimated, one could test that
the residuals of the levels regression are a stationary process using the Dickey–Fuller
(DF) test for a unit root (perhaps augmented by lagged differences of residuals to whiten
the error, denoted ADF). Let ût = yt− κ̂xt where κ̂ is the OLS estimate of the long-run
parameter κ, then the DF-statistic tests for H0: ρ = 0 in:

∆ût = ρût + ωt. (13.20)

A model like (13.20) based on ût, imposes a common factor on the dynamic structure
(see Campos, Ericsson, and Hendry, 1996, for a discussion of this drawback). Since
such tests are not optimal, Kremers, Ericsson, and Dolado (1992) contrast them with a

5Davidson, Hendry, Srba, and Yeo (1978), and much of the subsequent literature,referred to
these as ‘error corrections’.

6Regression methods can be applied to model I(1) variables which are in fact linked (i.e.,
cointegrate). Most tests still have conventional distributions, apart from that corresponding to a
test for a unit root.
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direct test for H0: ϕ2 = 0 in (say):

∆yt = ϕ1∆xt + ϕ2 (yt−1 − κxt−1) + ωt, (13.21)

where κ is not constrained to equal the short-run parameter ϕ1 as in (13.20). Because
the null rejection frequency of that test depends on the values of the ‘nuisance’ parame-
ters ϕ1 and σ2

v , Kiviet and Phillips (1992) develop a test which is invariant to the values
of ϕ1 and σ2

v (this coincides with the test computed in PcGive, and discussed blow). Its
distribution differs from the Dickey–Fuller distribution, so its critical values have been
separately tabulated. Banerjee, Dolado, Galbraith, and Hendry (1993) find the power of
tϕ2=0 can be high relative to the DF test. However, when xt is not weakly exogenous
(and hence conditioning is invalid), the test is potentially a poor way of detecting coin-
tegration, and so a multivariate method is needed. Thus, a partial answer to 5. is that
we can allow for unit root non-stationarity.

Most dynamic equations have an intercept, and may have additional deterministic
variables. In the general case of (13.5), simply interpret one of the regressors as the
required variable. However, with integrated data, estimation and inference depend on
which deterministic terms enter the model and the economic system, so care is required,
but we leave a formal analysis to Volume II, where we can properly analyze multivariate
cointegration.

PcGive is specifically designed to formulate, estimate, test, and analyze linear dy-
namic equations, and computes all of the statistics described above, and many more
discussed in later sections. The empirical cloth on the present theory skeleton is pre-
sented in later sections once a few more concepts have been introduced.

13.4 A typology of simple dynamic models
Hendry, Pagan, and Sargan (1984) provide a detailed analysis of single equation models
like (13.5), and show that most of the widely-used empirical models are special cases of
(13.5). There are nine distinct model types embedded in (13.5), a point most easily seen
by considering the special case of k = n = 1 and m = 0, so that all of the polynomials
are first order, and only one x variable is involved:

yt = α1yt−1 + β0xt + β1xt−1 + ϵt where ϵt ∼ IN
[
0, σ2

ϵ

]
(13.22)

and IN
[
µ, σ2

]
denotes an independent, normal random variable with mean µ and con-

stant variance σ2.
All nine of the following models are obtainable by further restrictions on this extremely
simple case:
1. static relationship;
2. autoregressive process;
3. leading indicator;
4. growth-rate model;
5. distributed lag;
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6. partial adjustment;
7. autoregressive-error model (COMFAC);
8. equilibrium-correction mechanism (EqCM);
9. dead-start model.
Equation (13.22) is a specialization of the special case of a linear, single-equation dy-
namic model, with the apparently restrictive assumption that {ϵt} is a white-noise pro-
cess. Yet most widely-used model types are schematically represented in (13.22), and
the typology highlights their distinct characteristics, strengths and weaknesses.

To clarify the approach, we consider the nine cases in turn, deriving each via re-
strictions on the parameter vector:

θ′ = (α1, β0, β1)

of (13.22), noting that an intercept and an error variance can be included without alter-
ing the implications in all models, and are omitted for simplicity of exposition. Four of
the cases impose two restrictions on θ and five impose one, and these will be referred
to respectively as one and two parameter models since σ2 is common to all stochastic
models. Table 13.1 lists the outcomes.

Table 13.1 Model Typology
Type of Model θ′ Entailed Restrictions on (13.22)
static regression (0, β0, 0) α1 = β1 = 0 no dynamics
autoregressive process (α1, 0, 0) β0 = β1 = 0 no covariates
leading indicator (0, 0, β1) α1 = β0 = 0 no contemporaneity
growth rate (1, β0,−β0) α1 = 1, no levels

β1 = −β0
distributed lag (0, β0, β1) α1 = 0 finite lags
partial adjustment (α1, β0, 0) β1 = 0 no lagged x
autoregressive error (α1, β0,−α1β0) β1 = −α1β0 one common factor

error correction (α1, β0,K) K =
β0 + β1
1− α1

long-run response
dead-start (α1, 0, β1) β0 = 0 lagged variables

Three important issues must be clarified before proceeding: the status of {xt}; the
dependence of the model’s properties on the data properties; and whether each model
type is being treated as correctly specified or as an approximation to a more general
DGP such as (13.5). These three problems arise in part because the analysis has not
commenced from the most general system needed to characterize the observed data ad-
equately, and in part because the DGP is unknown in practice, so we do not know which
data properties to take as salient features in an analytical treatment (not to mention in
empirical studies). A system formulation is offered in Chapter 15.

For the present, we treat {xt} as if it were (weakly) exogenous for the parameters
of interest in θ (see Engle, Hendry, and Richard, 1983, and §15.7.2). Heuristically,
weak exogeneity ensures that we can take the conditioning variables as valid, and so
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analyze the conditional equation (13.22) without loss of any relevant information about
θ, despite not also modelling the process determining xt: this would be false if the
model of xt depended on θ. When xt in (13.22) is weakly exogenous for θ, then if
any member of the typology is valid, so must be every less restricted, but identifiable,
member. That statement has profound implications not only for the general methodol-
ogy of modelling, but also for such major issues of current contention as the practice of
‘allowing for residual autocorrelation’, the validity of analyzing over-identified simul-
taneous systems (the Sims critique: see Sims, 1980, and Hendry and Mizon, 1993), and
the imposition of restrictions based on prior theory, including the Lucas critique (see
Lucas, 1976, Favero and Hendry, 1992, and Ericsson and Irons, 1995).

As noted earlier, xt is assumed to be I(1), and for convenience, we take {∆xt} to
be a stationary process. This determines the answer to the second issue; but since some
economic time series seem to be I(0) (e.g., unemployment), the case xt ∼ I (0) remains
relevant. If xt and yt are cointegrated, then ut = (yt −Kxt) ∼ I (0), but such a belief
may be false, and the case ut ∼ I (1) ∀K must be noted. The typology treats each case
in turn, as if it were the correct specification, but notes both the historical success of
such an assumption, and the likely consequences when it is incorrect.

13.4.1 Static regression

Equations of the form
yt = b0xt + ut

(with b0 and xt vectors in general) have played a large role in many macro-econometric
systems as erstwhile ‘structural’ equations (i.e., embodying the fundamental parame-
ters of the behaviour of economic agents). In practice, {ut} has usually been highly
autocorrelated (reminiscent of nonsense correlations – see Yule, 1926), so that conven-
tional inference about b0 is invalid (see, for example, Granger and Newbold, 1974, and
Phillips, 1986). However, static equations reappeared as part of a two-stage strategy
for investigating cointegration, with the focus on testing whether or not {ut} was I(1)
against the alternative that it was I(0) (see Engle and Granger, 1987). Then, b0 would
be a direct estimator of K in (13.9). Even so, the success of such an estimator in finite
samples has been questioned (see Banerjee, Dolado, Hendry, and Smith, 1986), and is
dependent on the mean lag between y and x, noting that a static equation imposes that
mean lag at zero. Alternatively, the strategy of removing the autocorrelation in {ut} by
fitting an autoregressive process is considered in §13.4.7. Finally, viewed as a structural
equation, all of the restrictions on dynamics and covariates are testable against (13.5),
as are the implicit restrictions highlighted in §15.7.

13.4.2 Univariate autoregressive processes

The equation
yt = a1yt−1 + et

serves as our representative of univariate time-series models (see Box and Jenkins,
1976). If yt is I(1), a1 = 1, inducing a random walk when et is white noise. Autore-
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gressive equations are widely used for ex ante forecasting, and have proved a powerful
challenger to econometrics systems in that domain (see, for example, Nelson, 1972, and
the vector analogues in Doan, Litterman, and Sims, 1984; see Clements and Hendry;
Clements and Hendry, 1998, 1999, for an explanation based on other sources of non-
stationarity than unit roots). In economics, the interdependence of economic decisions
(for example, one person’s income is another’s expenditure) entails that univariate au-
toregressions must be derived, and hence are not autonomous processes – where an
equation for yt is autonomous if changes in the process generating xt do not alter it.
Here, the autoregression is obtained by eliminating, or marginalizing with respect to,
xt. For example, let xt = xt−1 + νt where νt ∼ IN

[
0, σ2

t

]
when in fact α1 = 1

and β1 = −β0 in (13.22), then yt = yt−1 + ϵt + β0νt has a non-constant variance
σ2
ϵ + β2

0σ
2
t . Consequently, econometric models should both fit better than autoregres-

sions (or else they are at least dynamically mis-specified), and should forecast better (or
else the constancy of the econometric model must be suspect).

That both these requirements are sometimes not satisfied is owing in part to the
inappropriateness of some current empirical methodological practices. A major objec-
tive of PcGive is to offer an alternative approach which circumvents such difficulties
by commencing from a general dynamic specification that automatically embeds the
relevant special cases.

13.4.3 Leading indicators

Models of the form
yt = c1xt−1 + vt

can be used in forecasting if x leads y with sufficient reliability (for example, orders
arrive ahead of output). In the absence of a sound behavioural theory, however, c1 need
not be constant. If it is not, that will lead to poor forecasting, especially in periods
of change when good forecasts are most needed. Moreover, there seems no good rea-
son for excluding lagged ys, and if a general dynamic model is postulated, then the
econometric considerations in §15.5, §15.7, §15.6 and §15.8.2 apply: see Emerson and
Hendry (1996) and Clements and Hendry (1998).

13.4.4 Growth-rate models

The evolutionary and trend-like behaviour of many economic time series led earlier
investigators to recommend differencing data prior to statistical analysis. One example
is Granger and Newbold (1977) although, as argued in Hendry and Anderson (1977),
there are other transformations (such as ratios) which potentially could also remove
trends. That leads on to the concept of cointegration discussed in §13.4.8.

Growth-rate models have the form

∆yt = d0∆xt + ηt.

Such models successfully avoid nonsense regressions problems in I(1) data, and from
the transformed dependent variable, a useful measure of goodness of fit can be calcu-
lated. Nevertheless, if the variance of ∆xt is large relative to that of ∆yt, d0 must be
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small even if yt and xt are cointegrated withK = 1 (this is the permanent income issue
in one guise: see Davidson, Hendry, Srba, and Yeo, 1978). Further, although yt = Kxt
implies ∆yt = K∆xt, the converse is false in a stochastic world owing to integrating
the error.

Alternatively, there are no a priori grounds for excluding levels from economic
relationships since initial disequilibria cannot be assumed to be irrelevant: that is, the
time path of ∆yt for a given sequence ∆xt may depend on the relationship between y0
and x0. Two further insights into the drawbacks of growth-rate models are discussed
below in §13.4.7 and §13.4.8.

On the methodological level, a mistake sometimes committed in applied economics
is to begin with a linear approximation to a steady-state theory of the form: yt =

f (xt), fit a static model thereto, discover severe residual autocorrelation and ‘correct’
that, either by differencing, or by using ‘Cochrane–Orcutt’ (but see their 1949 article,
Cochrane and Orcutt, 1949, which does not recommend that procedure, as noted by
Gilbert, 1989) but finding an autoregressive parameter near unity. While the goodness
of fit may not be greatly worsened by imposing differencing, dynamic responses can be
substantially distorted, and ignoring long-run feedbacks may distort policy strategies.

13.4.5 Distributed lags

Although using only one lag makes the resulting model highly schematic, but neverthe-
less the equation

yt = f0xt + f1xt−1 + ξt,

is representative of the class of finite distributed lags. Such models remain open to
the objections noted in §13.4.1 above, are highly dependent on whether xt is weakly,
or strongly, exogenous unless ξt is white noise (which in practice it rarely is in this
class), and tend to suffer from collinearity owing to the inappropriate parametrization
of including many levels of the regressor (see Chapter 16). Imposing so-called a priori
restrictions on the lag coefficients to reduce the profligate parametrization has little to
recommend it, although such restrictions are at least potentially testable. It is hard to
see any theoretical grounds for excluding lagged ys, given that they are another way
of representing a distributed lag relationship; and as shown in §13.4.7, considerable
dangers exist in arbitrarily removing any residual autocorrelation from ξt.

13.4.6 Partial adjustment

The equation
yt = g0xt + g1yt−1 + ζt

occurs regularly in empirical macro-economics, and can be derived from assuming a
long-run desired target of the form yt = Kxt subject to quadratic adjustment costs
(see, for example, Eisner and Strotz, 1963, and Nickell, 1985). While such a model
type seems reasonable in principle, it does not entail that the y and x variables which
agents use in their decision rules are precisely the levels analyzed by the economist.
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For example, agents may use the (log of the) consumption-income ratio as their yt, and
the growth rate of income as their xt, rather than the levels of both.7 The resulting
econometric specification, however, is wholly different despite the common element of
partial adjustment.

Even when yt and xt are cointegrated in levels, the partial adjustment model has
little to recommend it unless it happens to coincide with the DGP. The mean lag is
g1/ (1− g1) whereas the median lag (the number of periods to reach the half-way stage
towards equilibrium) is zero for g0 ≤ 1

2 and is − log (2g1) / log (g1) for g0 > 1
2 , so

that a skewed distribution is imposed irrespective of the data (see, for example, Hendry,
1995a, for the derivation of these formulae). When g1 is near unity, both measures
entail extremely slow adjustment, exacerbated by any untreated positive residual auto-
correlation. Further, xt and yt−1 are usually highly correlated, so again an unfortunate
parametrization is being selected. Since there are no good arguments for a priori ex-
cluding all the lagged xs, and plenty of empirical evidence to show that they do matter
in many cases, this model type again seems suspect.8

13.4.7 Autoregressive errors or COMFAC models

As noted in §13.2, some of the roots of a (L) and b (L) in (13.4) may be equal, allowing
cancellation. In the case of (13.22) with β0 ̸= 0, we can write the equation as:

(1− α1L) yt = β0

(
1 +

β1
β0
L

)
xt + ϵt.

Thus, if and only if α1 = −β1/β0 or β1 + α1β0 = 0, then on dividing both sides by
(1− α1L), the equation can be rewritten as:

yt = β0xt +
ϵt

(1− α1L)
,

or letting ρ = α1:

yt = β0xt + ut where ut = ρut−1 + ϵt, (13.23)

yielding a static model with an autoregressive error. The term (1− α1L) is a factor
(in this simple case, the only factor) of a (L) and similarly (1 + (β1/β0)L) is a factor
of b (L), so that when these are equal there is a factor in common in a (L) and b (L)
(leading to the name COMFAC). The converse that (13.23) induces a common factor is
obvious, so there is an isomorphism between autoregressive errors and common factors
in the lag polynomials: if you believe one, you must believe the other. Since (13.23)
imposes restrictions on (13.22), these are testable, and rejection entails discarding the
supposed reduction to (13.23) (see Hendry and Mizon, 1978). Thus, the ADL class
includes all models with autoregressive errors.

7The latter anyway seems suspect since few consumers appear to suffer great adjustment costs
in response to increases in their expenditure when income has risen.

8Lags would arise naturally in the postulated model if the agents’ y and x were not the levels
the economist selects.
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Perhaps the greatest non sequitur in the history of econometrics is the assumption
that autocorrelated residuals entail autoregressive errors, as is entailed in ‘correcting
serial correlation using Cochrane–Orcutt’. Dozens of mis-specifications in time-series
data will induce residual autocorrelation without corresponding to common factors in
the lag polynomials of the underlying general model (13.4). Indeed, the order of testing
is incorrect: to estimate any models like (13.23) first necessitates establishing the valid-
ity of (13.4), then showing that a (L) and b (L) have common factors, and finally testing
H0: ρ = 0. Showing that ρ ̸= 0 in equations like (13.23) does not prove that there are
valid common-factor restrictions. PcGive offers algorithms for testing common-factor
restrictions in equations like (13.5) using the Wald-test approach in Sargan (1980b). If
such restrictions are accepted, generalizations of (13.23) are estimable using the RALS
estimator.

Two points of importance from (13.23) are that: (a) it imposes a zero mean lag
irrespective of the actual lag responses, since the short-run and long-run responses are
forced to be equal by the choice of model type; and (b) the growth-rate model of §13.4.4
can be reinterpreted as imposing a common factor then setting ρ to unity. We concur
with the advice in the title of the paper by Mizon (1995).

13.4.8 Equilibrium-correction mechanisms

The issue of appropriate reparametrizations of θ has arisen on several occasions above,
and many alternatives are conceivable. One natural choice follows from rearranging
(13.22) as:

∆yt = (α1 − 1) yt−1 + β0∆xt + (β1 + β0)xt−1 + ϵt
= β0∆xt + (α1 − 1) (yt−1 −Kxt−1) + ϵt,

(13.24)

where K = (β0 + β1) / (1− α1) is the long-run response in (13.9) above when
α1 ̸= 1. The new parameters in f (θ) = ψ = (β0, (1− α1) ,K)

′ correspond to the im-
pact effect, the feedback effect and the long-run response: no restrictions are imposed in
this transformation. The term (y −Kx)t−1 was called an error-correction mechanism
(EqCM) in Davidson, Hendry, Srba, and Yeo (1978) since it reflected the deviation from
the long-run equilibrium outcome, with agents correcting (1− α1) of the resulting dis-
equilibrium each period. However, such a mechanism does not error correct between
equilibria, so equilibrium-correction mechanism is more apposite – and has the same
acronym (but is more often written EqCM). Sargan (1964) provides a real-wage exam-
ple, and Hendry and Anderson (1977) considered some non-unit EqCMs. The special
case K = 1 is of interest in econometrics as it corresponds to long-run proportionality
(or homogeneity in log-linear models), but EqCMs are well defined for K ̸= 1, al-
though usually K will then need to be estimated. As Hendry, Pagan, and Sargan (1984)
note, logistic formulations or more general functions may be necessary to model agents’
behaviour if they adjust more or less rapidly depending on the extent of disequilibrium
(see Escribano, 1985).

Engle and Granger (1987) establish an isomorphism between EqCMs and coin-
tegrated processes: if yt and xt are each I(1) and are cointegrated, then there exists
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an EqCM of the form (y −Kx) and conversely. The former does not entail that the
EqCM necessarily enters the yt equation, rather than the xt equation, and may enter
both (which would violate weak exogeneity: see Hendry and Mizon (1993) for an ex-
ample).

In our simple typology, the only EqCM case to impose any restrictions on (13.24) is
K = 1 or α1 + β0 + β1 = 1, revealing that all long-run proportionality theories can be
reproduced in static equilibrium by an appropriate EqCM. Here, this restriction yields:

∆yt = γ0∆xt − γ1 (y − x)t−1 + ωt. (13.25)

Thus, another interpretation of the growth-rate model §13.4.4 is revealed, namely, it
corresponds to imposing long-run homogeneity (α1 + β0 + β1 = 1) and the absence
of feedback from the level (1− α1 = 0), which together entail a unit root. Conse-
quently, small values of γ0 are compatible with long-run proportionality. Since partial
adjustment corresponds to the special case where x = y∗ (the desired target), it imposes
γ0 = −γ1 to exclude the lagged x.

The parametrization in (13.25) has several advantages beyond being more inter-
pretable: the regressors ∆xt and (y − x)t−1 will not usually be highly correlated, be-
ing a current change and a lagged disequilibrium; and proportionality is easily tested by
adding xt−1 as a (relatively non-collinear) regressor (however, such a test must allow
for the possibility that {xt} may be I (1)). Further, a less strong lag shape is being im-
posed, since the mean lag is (1− γ0) /γ1, which depends on both parameters, and can
be small even if (1− γ1) is around 0.9, whereas the median lag is zero for γ0 ≥ 1

2 and
is − log 2 (1− γ0) / log (1− γ1) for γ0 < 1

2 .

When the EqCM is the correct specification, the partial adjustment model may suf-
fer from severe biases, and possibly residual autocorrelation, since it omits xt−1 which
is highly correlated with xt: because the coefficients of xt and xt−1 are of similar
magnitudes but opposite signs, this will drive the coefficient of xt in the partial adjust-
ment model close to zero (a common empirical problem), so that g0 ≃ 1 − g1 results.
Note that β1 < 0 in (13.22) need not entail any negative weights {wi} in the solved
representation:

yt =

∞∑
i=0

wixt−i + ut.

Thus, do not delete lagged xs because their coefficients appear to have ‘wrong signs’,
since on a reparametrization they may have the correct sign.

Finally, EqCMs can be confused with COMFAC models despite their very different
implications for lag responses. This arises because COMFAC is an EqCM with the
restriction that long-run and short-run responses are equal, as can be seen by rewriting
(13.23) in the form:

yt = β0xt + ρ (yt−1 − β0xt−1) + ϵt,

or:
∆yt = β0∆xt + (ρ− 1) (y − β0x)t−1 + ϵt. (13.26)
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Thus, the degree of mis-specification of (13.26) for (13.24) depends on the extent to
which (α1 − 1) (K − β0) ̸= 0, which could be small even if K = 1 and, for example,
β0 = 0.4. Nevertheless, despite (13.24) and (13.26) having similar goodness of fit, the
mean lag in (13.24) when K = 1 could be large at the same time as (13.26) imposes it
at zero.

13.4.9 Dead-start models

The main consideration arising for this type of model is its exclusion of contemporane-
ous information. This could be because:

yt = α1yt−1 + β1xt−1 + ϵt (13.27)

is structural, and hence is a partial adjustment type. Alternatively, (13.27) could be a
derived form, from which xt has been eliminated, in which case (13.27) is unlikely to
be autonomous, and its parameters would be susceptible to alter with changes in the
behaviour of the xt process. In this second case, the coefficients are not interpretable
since they are (unknown) functions of the correlations between xt and (yt−1, xt−1).

Care is obviously required in selecting an appropriate type of model to characterize
both a given theory and the associated data; some of the methodological considerations
discussed below help clarify that choice.

13.5 Interpreting linear models
The notation for the linear model is the same as that in Chapter 14:

yt =

k∑
i=1

βixi,t + ϵt = β
′xt + ϵt with ϵt ∼ IN

[
0, σ2

ϵ

]
, (13.28)

where β is k × 1 and E [xtϵt] = 0. Grouping all the T observations:

y = Xβ + ϵ with ϵ ∼ N
[
0, σ2

ϵ IT
]

(13.29)

where y,X, ϵ are respectively T × 1, T × k and T × 1.
First, we discuss the four distinct interpretations of (13.28), see Richard (1980) or

Hendry, Pagan, and Sargan (1984):

13.5.1 Interpretation 1: a regression equation

A regression is the conditional expectation of yt given xt (denoted by E [yt|xt]). Taking
the conditional expectation in (13.28):

E [yt | xt] = β
′xt (13.30)

where β is a parameter of interest. Sufficient conditions to sustain that interpretation
of (13.28) are a jointly stationary, multivariate-normal distribution for (yt,xt) with xt
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weakly exogenous for β. (A formal derivation of a conditional equation in a bivariate
normal distribution is provided in Chapter 14. The properties of regression estimators
are also discussed in that chapter: for example, that V [yt − β′xt] is minimized by the
choice of β̂). Notice that the minimal conditions which needed to justify (13.30) are
not sufficient to sustain E [y|X] = Xβ, which is used in Chapter 14, as that involves
conditioning past ys on future xs.

13.5.2 Interpretation 2: a (linear) least-squares approximation

Here, the approximation is to a postulated general function:

yt = f (xt) + et,

chosen on the criteria that: (a) (13.28) is linear in xt; and (b)
∑T

t=1 ϵ
2
t is to be min-

imized. Graphically, β in (13.28) is not ∂f/∂x′ (the tangent), owing to the second
criterion, but must be a chord. If ϵt is non-normal, the regression would not be lin-
ear, whereas a linear approximation must be, so §13.5.1 and §13.5.2 are distinct. If,
in practice, f is non-linear then (13.28) may be a poor approximation, {ϵt} could be
autocorrelated, and forecasts could be poor (since ∂f/∂x′

t need not be constant). Of
course, a quadratic or even a higher-order approximation to f (x) could be used. White
(1980) provides a formal analysis of this case.

13.5.3 Interpretation 3: an autonomous contingent plan

In this interpretation:
ypt = x′

tβ,

is the planned value and:
yt = ypt + ut,

is the outcome, which deviates randomly from the plan (see Marschak, 1953, Bentzel
and Hansen, 1955, and Hendry and Richard, 1983). Thus, (13.28) characterizes how
agents form plans, and β is an invariant parameter (see Frisch, 1938). Since {ut} need
not have a joint normal distribution, §13.5.3 and §13.5.1 are different; and f (x) might
be approximated by a non-linear function of xt, so §13.5.2 and §13.5.3 also differ. For
example, autoregressive-conditional heteroscedastic (ARCH) errors (so the variance at
time t depends on the variance at time t − 1) would be one instance where {ut} is not
jointly normal, in which case, E [y|X] ̸= Xβ need not hold although (13.28) could still
be correct.

13.5.4 Interpretation 4: derived from a behavioural relationship

The final interpretation is:

E [yt | It−1] = β
′E [xt | It−1] ,

or:
ypt = β′xe

t ,
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where It−1 denotes the universe of information available to agents at the time their
plans are formulated. Here, the distinction is drawn between a plan (which is made
about a variable that the relevant agent controls), and an expectation (which is formed
about an uncontrolled variable). Let νt = xt − xe

t and ηt = yt − ypt be the vector of
expectational errors and the departure of the outcome from the plan respectively, with
E [νt|It−1] = 0 and E [ηt|It−1] = 0, then:

yt = β
′xt + ϵt with ϵt = ηt − β′νt,

so that E [ϵt|It−1] = 0 but E [ϵt|xt] ̸= 0 owing to their sharing the common component
νt. In this setting, regression is inconsistent (and biased) for the parameter of interest
β, and may deliver non-constant estimates even when β is invariant when the process
determining xt alters. Clearly, §13.5.4 is distinct from §13.5.1–§13.5.3.

Merely asserting yt = β′xt + ϵt is not an adequate basis for econometric analysis,
given the four distinct interpretations of equation (13.28) just described. Although the
four interpretations happen to coincide in stationary, linear models with normal errors,
the distinctions in §13.5.1–§13.5.4 are not formal: in practice, which one is valid entails
quite different prognoses for the success (or failure) of any empirical study. When the xt

process varies enough, some discrimination is possible owing to the non-constancy of
β, and this is both the usual situation and that in which discrimination actually matters.

13.6 Multiple regression
The algebra of least-squares estimation is established in matrix notation in Chap-
ter 14, and we merely record some of the most relevant formulae here. First, the
OLS coefficient estimates and their estimated variances are:

β̂ = (X′X)
−1

X′y with
̂
V
[
β̂
]
= σ̂2

ϵ (X
′X)

−1
.

Also the error variance estimate and the residual sum of squares are:

σ̂2
ϵ =

RSS

(T − k)
when RSS =

(
y −Xβ̂

)′ (
y −Xβ̂

)
.

Further, M = IT−X (X′X)
−1

X′ is a symmetric, idempotent matrix which annihilates
X, so MX = 0 implying My = Mϵ = û (the vector of residuals y −Xβ̂). Tests of
H0: β = 0, or components thereof, are developed in Chapter 14. A simple empirical
example with a constant and two other regressors is presented in §12.10.

It is a brave (foolhardy?) investigator who deems their model to coincide with the
DGP, and most econometricians consider the possibility of various mis-specifications
when appraising empirical research. A number of possibilities can be shown alge-
braically, such as omitting a relevant regressor. Denoting the OLS estimator of the mis-
specified model by ,̃ partition X = (Xa : Xb), and conformably let β = (β′

a : β′
b)

′

which are ka × 1 and kb × 1 so that ka + kb = k. Then:

β̃ = (X′
aXa)

−1
X′

ay and
˜
V
[
β̃a

]
= σ̃2

ϵ (X
′
aXa)

−1 when σ̃2
ϵ =

y′May

(T − ka)
,
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and Ma has the same form as M but using only Xa. Partitioned inversion of (X′X)

leads to the important numerical identity that:

β̃a ≡ β̂a +Bβ̂b where B = (X′
aXa)

−1
X′

aXb.

If {xt} is a stationary stochastic process, then:

E
[
σ̃2
ϵ

]
≥ E

[
σ̂2
ϵ

]
,

since there is a component of xb,t in the residual. Both the bias in β̃a and in the error
variance were illustrated by the comparative regression results in §12.10. Tests for the
significance of omitted variables can be undertaken from the Test menu; what would
you conclude after getting significant test results for two different choices?

Despite a high correlation between xa,t and x, it is possible that:

̂
V
[
β̂
]
<

˜
V
[
β̃a

]
,

owing to the reduction in σ̂2
ϵ from σ̃2

ϵ when xb,t is added to the regression of yt on xa,t.
A more extensive treatment of collinearity is provided in Chapter 16.

13.6.1 Estimating partial adjustment

All these issues can be illustrated empirically, and we do so using the artificial data
set called data.in7 and data.bn7, with the four variables CONS, INC, INFLAT and
OUTPUT. The first regression is of CONS on INC and CONS lagged (that is, a partial
adjustment form) which yields:9

EQ(1) Modelling CONS by OLS (using data.in7)
The estimation sample is: 1953 (2) to 1992 (3)

Coefficient Std.Error t-value t-prob Part.R^2
CONS_1 0.823870 0.03300 25.0 0.000 0.8008
Constant -45.6043 14.65 -3.11 0.002 0.0589
INC 0.223975 0.04158 5.39 0.000 0.1577

sigma 2.03715 RSS 643.24383
R^2 0.977627 F(2,155) = 3387 [0.000]**
Adj.R^2 0.977339 log-likelihood -335.103
no. of observations 158 no. of parameters 3
mean(CONS) 875.848 se(CONS) 13.5326

AR 1-5 test: F(5,150) = 14.442 [0.0000]**
ARCH 1-4 test: F(4,150) = 20.581 [0.0000]**
Normality test: Chi^2(2) = 4.2396 [0.1201]
Hetero test: F(4,153) = 2.7848 [0.0286]*
Hetero-X test: F(5,152) = 2.2154 [0.0556]
RESET23 test: F(2,153) = 4.0817 [0.0188]*

At first sight, the coefficients seem well determined, and the long-run effect of INC on
CONS is close to unity. However, the test summary indicates problems. We will return
to testing the specification in the next section.

9The exact form of the output depends on the options settings.
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13.6.2 Heteroscedastic-consistent standard errors

Since residual autocorrelation and residual heteroscedasticity both bias estimated co-
efficient standard errors, corrections have been developed. These can be computed in
PcGive by selecting Test, Further output, which yields:

Heteroscedasticity consistent standard errors
Coefficients SE HACSE HCSE JHCSE

CONS_1 0.82387 0.033004 0.048736 0.032659 0.033110
Constant -45.604 14.647 19.361 13.642 13.778
INC 0.22398 0.041582 0.062002 0.040992 0.041563

Coefficients t-SE t-HACSE t-HCSE t-JHCSE
CONS_1 0.82387 24.962 16.905 25.226 24.883
Constant -45.604 -3.1135 -2.3554 -3.3428 -3.3100
INC 0.22398 5.3864 3.6124 5.4638 5.3889

The column above labelled HCSE denotes heteroscedastic-consistent standard er-
rors (see Eicker, 1967, and White, 1980). Relative to the usual standard errors reported
for regression estimation, HCSEs reflect any heteroscedasticity in the residuals which
is related to the regressors. Consider OLS estimation in (13.28) when ϵt ∼ IN

[
0, σ2

t

]
with E [xtϵs] = 0 ∀t, s,but we mistakenly believe that:

ϵt h̃
IN
[
0, σ2

ϵ

]
,

where
h̃

denotes ‘is hypothesized to be distributed as’. To estimate β, we set to zero:

T∑
t=1

xtϵt = 0. (13.31)

Then, to derive the variance, we would analytically calculate:

E

 T∑
t=1

xtϵt

(
T∑

t=1

xtϵt

)′ = E

[
T∑

t=1

T∑
s=1

xtϵtϵsx
′
s

]
=

T∑
t=1

σ2
t xtx

′
t,

from which the variance of β̂ is given by:

V = V
[
β̂
]
= (X′X)

−1

(
T∑

t=1

σ2
t xtx

′
t

)
(X′X)

−1
. (13.32)

This involves a weighted average of the xs with weights σ2
t proportional to the het-

eroscedastic error variances. The conventional variance estimator is:

V
[̂
β̂
]
= σ̂ϵ

(
T∑

t=1

xtx
′
t

)−1

.

When the weights σ2
t in (13.32) are not constant, the conventional variance estimator

does not correctly reflect the estimation uncertainty.
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Surprisingly, the correct variance formula in (13.32) can be estimated from the sam-
ple by replacing the unknown σ2

t by ϵ̂2t (see White, 1980):

V̂ = (X′X)
−1

(
T∑

t=1

ϵ̂2txtx
′
t

)
(X′X)

−1
. (13.33)

V̂ is consistent for V (see White, 1980) and the conventional estimator of V arises
when all

{
σ2
t

}
are constant. The square roots of the diagonal of V̂ are the HCSEs

above. When these are close to the OLS SEs, there is little evidence of distortion of
inference from untreated heteroscedasticity. The JHCSEs denote Jackknife corrections
(see MacKinnon and White, 1985).

Similarly, generalizations to allow for error autocorrelation have been obtained, and
are reported above as HACSEs (see Newey and West, 1987 and Andrews, 1991). How-
ever, in both cases in must be remembered that residual autocorrelation and residual
heteroscedasticity may derive from dozens of causes, unrelated to the errors. In these
common cases, the various forms of HCSE, HACSE etc. will not be useful – they
merely serve to camouflage model mis-specification, not improve inference.

All reported statistics depend on assumptions about how well the model describes
the data, and until these assumptions are established as valid, the interpretation of
any empirical output is unclear. In the previous chapter, we considered the many as-
sumptions made to derive the distribution of ‘t’-tests : the assumptions for HCSEs are
weaker, but nonetheless strong – as just seen. As a first pass, we use Test, Graphical
analysis to visually investigate the fit, the residuals, the residual correlogram, and the
density of the residuals. The outcome is shown in Figure 13.1 and reveals a fair fit, but
distinct residual autocorrelation, as well as a major group of ‘outliers’ in the residuals
around 1973–4 (does this historical period ring any warning bells?).

More formal mis-specification tests will be considered shortly, but the graph shows
substantial residual autocorrelation. How to proceed now?

13.6.3 Specific-to-general

To test a specification, investigators often add extra variables, so we first include lagged
INC to obtain:

EQ(2) Modelling CONS by OLS (using data.in7)
The estimation sample is: 1953 (2) to 1992 (3)

Coefficient Std.Error t-value t-prob Part.R^2
CONS_1 0.985875 0.02762 35.7 0.000 0.8922
Constant 2.51140 11.39 0.220 0.826 0.0003
INC 0.495844 0.03797 13.1 0.000 0.5255
INC_1 -0.484913 0.04103 -11.8 0.000 0.4756

sigma 1.47998 RSS 337.313361
R^2 0.988268 F(3,154) = 4324 [0.000]**
Adj.R^2 0.988039 log-likelihood -284.107
no. of observations 158 no. of parameters 4
mean(CONS) 875.848 se(CONS) 13.5326
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Figure 13.1 Goodness-of-fit measures for partial adjustment model

The added variable is highly significant, and so invalidates the first partial-adjustment
model. The standard errors of both CONS and INC have fallen, despite adding the
collinear variable INC 1, mainly because s has fallen markedly. Consistent with that
feature, the partial r2 values have increased.

Unfortunately, the model appears to have a common factor of unity suggesting that
CONS and INC are not cointegrated (the lagged dependent variable coefficient is near
unity, and the coefficients on INC and INC lagged are equal magnitude opposite sign).
Three formal tests are possible, assuming the model is a good data description. First,
we test for a common factor (Dynamic analysis, Test for common factors) to obtain:

COMFAC Wald test statistic table, COMFAC F(1,154) = 0.0306861 [0.8612]
Order Cumulative tests Incremental tests
1 Chi^2(1) = 0.030686 [0.8609] Chi^2(1) = 0.030686 [0.8609]

The test easily accepts, so the model is now COMFAC rather than partial adjustment.
The calculated values of the roots are also shown, and these are close to unity. Thus,
we next test for a unit root by seeing if all the coefficients (other than the constant) add
to unity: the linear restrictions test yields:

Test for linear restrictions (Rb=r):
R matrix

CONS_1 Constant INC INC_1
1.0000 0.00000 1.0000 1.0000

r vector
1.0000

LinRes F(1,154) = 0.0648135 [0.7994]
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This too accepts with ease. This suggests it is worth conducting the PcGive unit-root
test (see Banerjee and Hendry, 1992) (from the Test menu, Dynamic analysis, reported
only in part here):

Tests on the significance of each variable
Variable F-test Value [ Prob] Unit-root t-test
CONS F(1,154) = 1274.1 [0.0000]** -0.51143
Constant F(1,154) = 0.048588 [0.8258]
INC F(2,154) = 97.321 [0.0000]** 0.31073

Finally, the solved long run is badly determined and the unit-root test does not reject.
All the evidence meshes: CONS and INC do not cointegrate.

Solved static long run equation for CONS
Coefficient Std.Error t-value t-prob

Constant 177.794 1022. 0.174 0.862
INC 0.773850 1.159 0.667 0.505
Long-run sigma = 104.775

ECM = CONS - 177.794 - 0.77385*INC;
WALD test: Chi^2(1) = 0.445497 [0.5045]

Again one must ask: how valid are these tests? A glance at the graphical diagnostics
(corresponding to Figure 13.1) shows that the residual autocorrelation has not improved,
so none of the SEs is reliable. More formal mis-specification tests are provided in the
Test summary, and yield:

AR 1-5 test: F(5,149) = 7.8187 [0.0000]**
ARCH 1-4 test: F(4,150) = 6.2829 [0.0001]**
Normality test: Chi^2(2) = 7.6549 [0.0218]*
Hetero test: F(6,151) = 1.0948 [0.3681]
Hetero-X test: F(9,148) = 1.0733 [0.3859]
RESET23 test: F(2,152) = 2.9783 [0.0539]

There is indeed significant residual autocorrelation, and apparently autoregressive con-
ditional heteroscedasticity (ARCH) as well (see Engle, 1982). However, the latter could
be caused by the former (see Engle, Hendry, and Trumbull, 1985), and merely shows the
difficulty of interpreting outcomes when several tests reject. If we test for the omission
from the equation of the remaining two variables in the database, we obtain:

Omitted variables test: F(2,152) = 67.5992 [0.0000] **
Added variables:
[0] = INFLAT
[1] = OUTPUT

Both seem to matter! All previous results are invalidated: how to proceed now? Does
this explain the earlier problems? – or do they explain the latest results? or do further
‘untreated problems’ lurk unseen?
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13.6.4 General-to-specific (Gets)

It is precisely conundrums of the form just encountered that have led us to suggest
an alternative approach to modelling. If at some stage you intend to investigate the
relevance of a given phenomenon (for example, lagged INC, or INFLAT), include it
in the model from the outset if sample size allows: this leads to general-to-specific
modelling (or Gets), discussed in greater detail in Chapter 16.

The initial general model should contain all the effects likely to be relevant, in-
cluding sufficient lags to ensure no residual autocorrelation, then be tested for its va-
lidity. Once that has been established, further testing can proceed in confidence that
conflicts will not arise. To illustrate, consider as an initial starting point a model involv-
ing CONS, INC, and INFLAT, adding their one-period lags:

EQ( 3) Modelling CONS by OLS (using data.in7)
The estimation sample is: 1953 (2) to 1992 (3)

Coefficient Std.Error t-value t-prob Part.R^2
CONS_1 0.798310 0.02716 29.4 0.000 0.8504
Constant -20.2695 8.526 -2.38 0.019 0.0358
INC 0.498937 0.02833 17.6 0.000 0.6711
INC_1 -0.276105 0.03788 -7.29 0.000 0.2590
INFLAT -0.793095 0.1840 -4.31 0.000 0.1090
INFLAT_1 -0.250612 0.2031 -1.23 0.219 0.0099

sigma 1.07836 RSS 176.753411
R^2 0.993852 F(5,152) = 4915 [0.000]**
Adj.R^2 0.99365 log-likelihood -233.053
no. of observations 158 no. of parameters 6
mean(CONS) 875.848 se(CONS) 13.5326

The standard errors are much smaller than any previous results, and partial R2 are
higher, although the correlations between the regressors are quite large:

Correlation matrix
CONS CONS_1 INC INC_1 INFLAT

CONS 1.000
CONS_1 0.9866 1.000
INC 0.9422 0.9310 1.000
INC_1 0.9144 0.9414 0.9510 1.000
INFLAT -0.3511 -0.2756 -0.1271 -0.07332 1.000
INFLAT_1 -0.4174 -0.3405 -0.1953 -0.1124 0.9266

Seven correlations exceed 0.9, yet every coefficient in the regression is well determined,
although some are small. For example, the longest lag on INFLAT is irrelevant and
could be eliminated. The goodness of fit as measured by s is 50% less than for the first
equation, so the general model provides a usable baseline.

Next we test for a common factor:

COMFAC Wald test statistic table, COMFAC F(2,152) = 53.1042 [0.0000] **
Order Cumulative tests Incremental tests
1 Chi^2(2) = 106.21 [0.0000]** Chi^2(2) = 106.21 [0.0000]**

Roots of lag polynomials:
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real imag modulus
CONS 0.79831 0.00000 0.79831
INC 0.55339 0.00000 0.55339
INFLAT -0.31599 0.00000 0.31599

The COMFAC test strongly rejects, and the roots are now well below unity in absolute
value.10 Correspondingly, the long run is well determined, and the unit-root test rejects
the null, so cointegration is obtained between CONS, INC and INFLAT:

Solved static long run equation for CONS
Coefficient Std.Error t-value t-prob

Constant -100.498 37.53 -2.68 0.008
INC 1.10482 0.04185 26.4 0.000
INFLAT -5.17480 0.5224 -9.91 0.000
Long-run sigma = 5.3466

ECM = CONS + 100.498 - 1.10482*INC + 5.1748*INFLAT;
WALD test: Chi^2(2) = 962.504 [0.0000] **

Tests on the significance of each variable
Variable F-test Value [ Prob] Unit-root t-test
CONS F(1,152) = 863.96 [0.0000]** -7.4261**
Constant F(1,152) = 5.6515 [0.0187]*
INC F(2,152) = 159.04 [0.0000]** 6.8393
INFLAT F(2,152) = 69.037 [0.0000]** -11.1

The model satisfies all the statistics in the diagnostic test summary, and Figure 13.2
shows the improved graphical performance: with a little experience, a glance at Figure
13.1 shows a failed model, whereas Figure 13.2 is fine. Hopefully, your experience is
growing rapidly.

13.6.5 Automatic model selection using Autometrics

Automatic model selection is a recent addition to the toolkit of the applied econometri-
cian. When the initial model is large, general-to-specific modelling (Gets), as described
in the previous section, can be very time consuming. There may be many paths that
provide a valid reduction. At the same time it is necessary to keep checking the validity
of each reduction (i.e. to maintain congruency, see §13.10.2). The computer implemen-
tation of Gets provides a convenient solution. The modeller only needs to specify the
initial model and the significence level at which to reduce the model. The algorithm
then does the rest. In PcGive, the automatic model selection facilities are provided by
Autometrics.

The initial model is called the general unrestriced model or GUM. This provides
the initial information set, and should be designed to be congruent. The choosen sig-
nificance level, say 100pa = 5%, then determines the criteria for removing regressors.

10Neil Ericsson pointed out to us that, being a Wald test of non-linear restrictions, COMFAC
is susceptible to how it is formulated (see e.g., Gregory and Veale, 1985): if the order of the
variables was CONS, INFLAT, INC, the test statistic would have been χ2(2) = 76.71 [0.000]∗∗.
The test still strongly rejects here, but has a much smaller value.
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Figure 13.2 Goodness-of-fit measures for ADL

It also specifies the extent to which we accept a deterioration in information: no joint
reduction is allowed to be significant at 5% or less. Provided that the GUM satisfies the
default set of diagnostic tests, each reduction will also pass the tests. As with manual
model selection we have to accept the possibility of mistakes which are a consequence
of statistical modelling. Variables that are only borderline significant will often be
missed, and irrelevant variables will sometimes be included (with K irrelevant vari-
ables we should expect to keep Kpa). So we may wish to set pa = 0.01 when the
GUM is large. More detail is provided in §15.8.

Autometrics will follow many reduction paths (not all, as there are 2k paths for k
regressors). In general, there will be more then one terminal models. These are all valid
reductions, and Autometrics uses the Schwarz criterion (see §18.2.12) as a tie-breaker.

Note that, when reducing at pa, there could be some regressors in the model that are
insignificant at pa. This could be because deletion would invalidate a diagnostic test, or
because they are jointly significant with other terms (i.e. removal would be an invalid
reduction from the GUM).

Returning to the tutorial dataset, we may wish to specify a GUM with 8 lags (two
years) of CONS, INC and INFLAT, with seasonals and a trend. This GUM has 31
regressors. Autometrics finds only one terminal model when using a 5% significance
level. Autometrics reports the significance as:

p-values in Final GUM and terminal model(s)
Final GUM terminal 1

CONS_1 0.00000000 0.00000000
CONS_4 0.02349818 0.02349818
CONS_5 0.00223414 0.00223414
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Constant 0.04571687 0.04571687
INC 0.00000000 0.00000000
INC_1 0.00000000 0.00000000
INFLAT 0.00000000 0.00000000
k 7 7
parameters 7 7
loglik -219.26 -219.26
AIC 2.9968 2.9968
HQ 3.0536 3.0536
SC 3.1367 3.1367

=======

p-values of diagnostic checks for model validity
Initial GUM cut-off Final GUM cut-off Final model

AR(5) 0.92327 0.01000 0.81791 0.01000 0.81791
ARCH(4) 0.29618 0.01000 0.30865 0.01000 0.30865
Normality 0.55356 0.01000 0.60248 0.01000 0.60248
Hetero 0.33307 0.01000 0.71207 0.01000 0.71207
Chow(70%) 0.40954 0.01000 0.19799 0.01000 0.19799

In the final model, the Constant has a significance of 4.6%, which corresponds to
an absolute t-value just above two.

The final GUM (which perhaps we should call specific unrestricted model instead)
is the union of all terminal models. In this case it is the same as the final model.

13.6.6 Time series

PcGive allows all members of the typology to be estimated with ease, and as §13.4.1–
§13.4.6 were considered in §13.6 above, we focus on §13.4.7 and §13.4.8 here, but in
the opposite order.

13.6.7 Equilibrium correction

The concepts of I(1) behaviour and cointegration (or its absence) were explained above,
and were illustrated using the general unrestricted model option by formulating a re-
gression of yt on xt and setting the lag length of each variable at unity. After estima-
tion, the long-run solution can be saved and graphed (called EqCM by default in the
program). Above, we tested the model for a common factor by the COMFAC proce-
dure and checked if the root was unity using the linear restrictions test: which of course
assumed conventional critical values. The PcGive unit-root test was also applied. We
now transform the preceding model to an EqCM.

First, CONS, INC and INFLAT are transformed to differences, and the right-hand
side levels to EqCM form (denoted CI) using the rounded coefficients:

CI = CONS + 100− INC + 5× INFLAT,

where income homogeneity is imposed. Add CI lagged one period to the model in
differences (the current value of CI must be deleted) and estimate as:

EQ( 4)Modelling DCONS by OLS (using data.in7)
The estimation sample is: 1953 (2) to 1992 (3)
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Coefficient Std.Error t-value t-prob Part.R^2
Constant 18.1489 1.726 10.5 0.000 0.4180
DINC 0.489427 0.02704 18.1 0.000 0.6802
DINFLAT -0.709203 0.1826 -3.88 0.000 0.0892
CI_1 -0.195899 0.01848 -10.6 0.000 0.4218

sigma 1.0962 RSS 185.054987
R^2 0.758689 F(3,154) = 161.4 [0.000]**
Adj.R^2 0.753988 log-likelihood -236.679
no. of observations 158 no. of parameters 4
mean(DCONS) -0.213409 se(DCONS) 2.2101

The outcome is a restricted, I(0), version of the ADL model, and all the coefficient
estimates are well determined. The s value confirms that the restrictions are acceptable.
Testing using the test summary yields:

AR 1-5 test: F(5,149) = 1.4037 [0.2262]
ARCH 1-4 test: F(4,150) = 1.3152 [0.2669]
Normality test: Chi^2(2) = 0.17211 [0.9175]
Hetero test: F(6,151) = 0.55048 [0.7690]
Hetero-X test: F(9,148) = 0.79076 [0.6253]
RESET23 test: F(2,152) = 0.93003 [0.3968]

Thus, there is no evidence of mis-specification against the historical sample informa-
tion. Figure 13.3 shows the goodness of fit and graphical statistics: we have added a
regression line to the cross plot both to show its 45o angle, and to remind you that these
graphs can be modified as flexibly as desired.

This concludes the EqCM analysis, except that the static regression in the next sec-
tion both illustrates the Engle and Granger (1987) approach of OLS estimation of a
cointegrating model (but see Banerjee, Dolado, Hendry, and Smith, 1986), and shows
the effects of ‘correcting for residual autocorrelation’.

13.6.8 Non-linear least squares, COMFAC, and RALS

As an alternative to direct estimation of the EqCM, return to the general model in
§13.6.4 (formulate a model, recall), but delete all the lagged variables, and estimate
the resulting static regression (from 1953(2)). If the variables were I(1), this might be
the first step of the Engle-Granger procedure.

EQ( 5) Modelling CONS by OLS (using data.in7)
The estimation sample is: 1953 (2) to 1992 (3)

Coefficient Std.Error t-value t-prob Part.R^2
Constant -147.330 22.00 -6.70 0.000 0.2244
INC 1.15256 0.02462 46.8 0.000 0.9340
INFLAT -2.47521 0.2051 -12.1 0.000 0.4845

sigma 3.27725 RSS 1664.75407
R^2 0.942098 F(2,155) = 1261 [0.000]**
Adj.R^2 0.941351 log-likelihood -410.224
no. of observations 158 no. of parameters 3
mean(CONS) 875.848 se(CONS) 13.5326
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Figure 13.3 Goodness-of-fit measures for EqCM

RALS denotes rth-order autoregressive least squares, and is for estimating equa-
tions with valid common factors, so that their dynamics can be appropriately simplified
to an autoregressive error. The residual sum of squares function for RALS is non-linear
in the parameters, so an analytic formula for the optimum does not exist, although nu-
merical methods can be used to locate it. In fact, one could always use numerical meth-
ods, even for OLS where an exact form does exist, although it might be a little slow. To
illustrate this principle, we first re-fit the static OLS regression by numerical optimiza-
tion, and compare the outcome with the result found by the analytical formula. Access
the Nonlinear modelling choice on the Model menu, and formulate the instructions as
follows:

actual = CONS;
fitted = &0 + &1*INC + &2*INFLAT;
&0 = -147.3301;
&1 = 1.152563;
&2 = -2.475206;

Estimate from 1953 (2); convergence is fast and the outcomes are almost identical (even
though standard errors are calculated numerically, not from the variance formula): in
particular, the RSS values match precisely.

EQ( 6) Modelling actual by NLS (using data.in7)
The estimation sample is: 1953(2) - 1992(3)

Coefficient Std.Error t-value t-prob Part.R^2
&0 -147.330 22.00 -6.70 0.0000 0.2244
&1 1.15256 0.02462 46.8 0.0000 0.9340
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&2 -2.47521 0.2051 -12.1 0.0000 0.4845

sigma 3.27725 RSS 1664.75407
R^2 0.942098 F(2,155) = 1261 [0.000]**
Adj.R^2 0.941351 log-likelihood -410.224
no. of observations 158 no. of parameters 3
mean(actual) 875.848 se(actual) 13.5326

Standard errors based on information matrix
BFGS/warm-up using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence

Following the route at the end of the previous section, for the static model of CONS
on INC and INFLAT, the value of the DW statistic suggests a high degree of residual
autocorrelation. This ‘problem’ might be ‘corrected’ by removing the autocorrelation,
so we consider that possibility next. Recall the static model, and estimate from 1953(2)
using Autoregressive Least Squares (RALS), with a first-order error process.

To obtain starting values:
1. Estimate the static model over 1953(1)–1992(3) to get initial values for the regres-

sion parameters.
2. Store the residuals in the database, then regress the residuals on their first lag over

over 1953(1)–1992(3).

actual=CONS;
xt = &0 + &1*INC + &2*INFLAT;
ut = actual - xt;
et = ut - &3*ut[-1];
et[1953(2)] = 0;
fitted=actual - et;
// starting values:
&0=-147.390; &1= 1.15263; &2=-2.47468; &3=0.698294;

EQ( 7) Modelling actual by NLS (using data.in7)
The estimation sample is: 1953(2) - 1992(3)

Coefficient Std.Error t-value t-prob Part.R^2
&0 404.894 35.37 11.4 0.0000 0.4598
&1 0.518200 0.03584 14.5 0.0000 0.5758
&2 -0.732022 0.2466 -2.97 0.0035 0.0541
&3 0.988712 0.01455 68.0 0.0000 0.9677

sigma 1.4381 RSS 318.493629
R^2 0.977481 F(3,154) = 2228 [0.000]**
Adj.R^2 0.977043 log-likelihood -279.572
no. of observations 158 no. of parameters 4
mean(actual) 875.848 se(actual) 13.5326

Standard errors based on information matrix
BFGS/warm-up using numerical derivatives (eps1=1e-06; eps2=0.005):
Strong convergence

Consider these results in the light of §13.4.7, and use the RSS value to calculate
a likelihood ratio test of COMFAC against the unrestricted dynamic model in §13.6



178 Chapter 13 Intermediate Econometrics

(RSScomfac(4) = 318.49 and RSSunrest(6) = 176.75):

FK1−K2

T−K1
=

(318.49− 176.75)× 152

176.75× 2
= 61.

The evidence fits like a glove: the DGP is not COMFAC, but EqCM. Figure 13.4 shows
the RALS graphical output.
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Figure 13.4 Goodness-of-fit measures for RALS

13.7 Econometrics concepts

13.7.1 Innovations and white noise

It is possible to obtain a significant value on a COMFAC test, yet the residuals of the
resulting RALS model be white noise according to the residual correlogram (Portman-
teau) statistic; such an outcome illustrates a non-innovation white-noise process. The
former outcome (i.e., COMFAC rejects) entails that a better model can be developed on
the same information set (that is, a model which does not impose COMFAC) – so the
error is not an innovation. The latter outcome shows that the same error is white noise
(not serially correlated).

An alternative illustration of that distinction can be created by dropping the EqCM
term from the model in §13.6. The correlogram statistic can be insignificant, but the
omitted-variable test option shows that the EqCM term still matters, so that the resid-
uals are not an innovation against lagged levels information (see Davidson, Hendry,
Srba, and Yeo, 1978, and Hendry and von Ungern-Sternberg, 1981, for empirical ex-
amples). Delete the equilibrium-correction term from the model in §13.6.7, and add in
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the 1-period lags of the three differences (so the resulting model has no long-run levels
solution) to produce:

EQ( 8) Modelling DCONS by OLS (using data.in7)
The estimation sample is: 1953 (3) to 1992 (3)

Coefficient Std.Error t-value t-prob Part.R^2
DCONS_1 0.260429 0.07369 3.53 0.001 0.0764
Constant -0.0644508 0.1042 -0.619 0.537 0.0025
DINC 0.527350 0.03262 16.2 0.000 0.6338
DINFLAT -0.529530 0.2883 -1.84 0.068 0.0218
DINC_1 -0.00786886 0.04963 -0.159 0.874 0.0002
DINFLAT_1 -0.744058 0.2822 -2.64 0.009 0.0440

sigma 1.29654 RSS 253.831609
R^2 0.662972 F(5,151) = 59.41 [0.000]**
no. of observations 157 no. of parameters 6

Figure 13.5 reports the corresponding graphical information: the correlogram is fairly
flat and close to that of a white-noise process even though the errors contain the omitted
EqCM, which would have a t-value of about 10 if entered directly in the model. An
appropriate test for autocorrelated errors would reject, however. Also see the discussion
in Hendry (1995a), and in §16.2 and §16.3.
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Figure 13.5 Mis-specified EqCM with near white-noise residuals

13.7.2 Exogeneity

This analytic notion is described in §15.7.2, and recurs in §16.5: for a fuller treatment
see Engle, Hendry, and Richard (1983). To illustrate, it happens that, in the present
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data set, there is no valid consumption function with income weakly exogenous for
invariant parameters of interest (CONS and INC are simultaneously determined); this
is not easily tested at an intermediate level: however, instrumental variables methods
(discussed below) could be used to investigate such a difficulty.

The comparison of §13.5.3 and §13.5.4 is illuminating since xt is not weakly ex-
ogenous for β in the latter. The required exogeneity condition is that β can be learned
from the conditional model alone, without loss of information. Thus, the xt variables
can be taken as given, or ‘determined outside the model under consideration’. That this
condition fails here is clear from the construction of the DGP in the Appendix. It also
follows on the ‘conventional’ notion of exogeneity, since E [xtϵt] ̸= 0 in §13.5.4. Nev-
ertheless, the ‘conventional’ notion of exogeneity is flawed, as we now explain. When
the DGP is stationary, regressing yt on xt will deliver a coefficient vector α (say) with
the property that E [yt|xt] = α′xt, and so there exists a model yt = α′xt + ξt where
E [xtξt] = 0. Apparently, xt is now ‘exogenous’! Indeed, xt is weakly exogenous
for α in that model, but α is, of course, not the parameter of interest, β. However,
the two parameters are related, which we illustrate by letting xt = Γxt−1 + νt, so
E [xt|xt−1] = Γxt−1, and E [νtν

′
t] = Ω. In §13.5.4, we saw that E [νtηs] = 0 ∀t, s

was not sufficient for xt to be weakly exogenous for β. Under stationarity, letting
Φ = E [xtx

′
t], then:

α = (E [xtx
′
t])

−1
(E [xtyt]) =

(
Ik −Φ−1Ω

)
β,

and so depends on Γ and Ω. Thus, β cannot be obtained from α without knowledge of
(Γ, Ω), which are the parameters of the {xt} process, showing that the requirements
for weak exogeneity are not satisfied: the parameter of interest can be obtained only
by modelling {xt}. This case is most easily derived for a scalar x-process, where
Φ = Ω/

(
1− Γ2

)
and α = Γ2β. This outcome is closely related to errors-in-variables

models, such as permanent income.
Finally, the presence or absence of xt in the equation is not germane to its weak

exogeneity status. To show that, §13.5.4 entails that yt = β′Γxt−1 + ϵt + β
′νt and

hence E [yt|xt−1] = β′Γxt−1 is a valid specification for regression. However, β can
be obtained from β′Γ only if Γ is known, which necessitates estimating the marginal
model for xt. That example reveals that xt need not be weakly exogenous for the
parameter of interest even when xt is absent from the equation analyzed.

Importantly, non-stationarity is the more usual state for economic time series, in
which case Γ and Ω are likely to be non-constant, inducing non-constancy in α even
when β is constant. Thus, we turn to investigating that issue.

13.7.3 Constancy and invariance

Recursive-estimation techniques are discussed formally in Chapter 14, but PcGive em-
bodies graphical options which make parameter constancy, or its absence, easy to illus-
trate. The basic idea is straightforward. A tedious way to see if parameters are constant
would be to fit the model to the first M > k observations for k parameters, then to
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fit it to M + 1, M + 2 etc. up to T , yielding T −M + 1 estimates of each coeffi-
cient and its standard error over the sample. Plotting these would reveal any changes
relative to the standard error measures. Fortunately, there are clever ways of doing so
built into PcGive and we merely have to choose recursive estimation to obtain all the
required statistics and associated tests. Use the same model as the final one for DCONS
in §13.6.7, and estimate by RLS. Figure 13.6 illustrates the graphical output.
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Figure 13.6 Recursive constancy statistics for EqCM

The first four plots are of the coefficient estimates at each point in the sample to-
gether with their approximate 95% confidence intervals (±2SE shown on either side);
for most of the data set, the estimates are significantly different from zero, and are rel-
atively constant over the sample once past the initial estimation. The fifth plot is of
the 1-step ahead residuals (forecast errors) also with an approximate 95% confidence
interval; the confidence bands are again reasonably constant, but increase somewhat
around 1974. However, the final plot of the break-point Chow test (see Chow, 1960)
shows that constancy is rejected at the 1% level over the oil-crisis period, and looking
more carefully at the coefficient plots, the change in the coefficient of DINFLAT is
noticeable.

Invariance is more complex to illustrate, so the artificial data set is helpful. (The
Appendix shows the DGP for the tutorial data set.) Consider a sine wave – it is non-
constant, but invariant to other changes. Above, we found that α was constant under
stationarity, but not invariant to changes in the process generating x. Thus, the two
concepts are distinct. To test for invariance in a regression model, one must first find
changes in the processes generating the regressors, then check if any regression param-
eters shift at the same time: that would refute a claim of invariance. Here, a model
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of INFLAT on OUTPUT and INFLAT 1 is highly non-constant following 1973(3) (see
Figure 13.7). This is precisely the point at which the coefficient of DINFLAT showed
a shift in the conditional EqCM model, EQ(4), consistent with non-invariance of the
inflation coefficient: see the last panel Figure 13.7. The common omitted factor in both
models is the Oil-price jump. A more realistic case of invariance analysis is described
in Hendry (1988).
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Figure 13.7 Recursive constancy statistics for marginal, and invariance comparison

13.7.4 Congruent models

We have now seen a variety of criteria that a model might reasonably be required to
satisfy, such as white-noise, innovation errors, homoscedasticity, constant parameters
that appear invariant to important historical and policy changes, and weakly exogenous
conditioning variables for the parameters of interest. The first three relate to the abil-
ity of a model to characterize the past; the middle two, to its ability to describe the
future; and the last to its validity in the present. A model which shows no departures
from the data on any of the evaluation criteria is said to be congruent with the evidence.
Non-congruent models can always be dominated by a model that explains the previous
mis-match; and the DGP is clearly congruent with the data, so congruent models have
much to recommend them. However, a sequence of congruent models of any given phe-
nomenon could be developed, each explaining more by augmenting the information set
appropriately. Thus, we need a further criterion to choose between them, as discussed
in the next section.
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13.7.5 Encompassing rival models

Encompassing is easy to illustrate in PcGive, so we first explain the concept and its
properties. Consider two rival explanations of a given variable denoted by M1 and M2.
The question at issue is whether the M2 model can explain features of the data which
the M1 model cannot. This is a test of M1, with M2 providing the alternative, to see
whether M2 captures any specific information not embodied in M1. The converse is
whether M1 can account for all the results found by M2, and that idea is formalized
in the notion of encompassing (see Hendry and Richard; Hendry and Richard, 1982,
1989, Mizon, 1984, and Mizon and Richard, 1986). A congruent undominated model
should encompass (that is, account for) previous empirical findings claimed to explain
the given dependent variable(s). Encompassing is denoted by E so if the relevant mod-
els are M1 and M2, then M1 EM2 reads as ‘M1 encompasses M2’. Notice that variance
dominance (fitting better on the basis of error variance) is not sufficient for encompass-
ing (the other model could still explain part of what the first did not), but is necessary
(as the better-fitting model clearly explains some aspects better than the other).

The ease of handling general models allows embedding approaches to be almost
automatic in PcGive. Encompassing and non-nested hypothesis tests are offered for
OLS and instrumental variables (IV), based on Cox (1961), Pesaran (1974) and Eric-
sson (1983), allowing pairs of single equation models to be tested directly. As argued
in Hendry and Richard (1989), encompassing essentially requires a simple model to
explain a more general one within which it is nested (often the union of the simple
model with its rivals); this notion is called parsimonious encompassing and is denoted
by Ep. An important property of parsimonious encompassing is that it defines a partial
ordering over models, since Ep is transitive, reflexive, and anti-symmetric. Since some
aspects of inference must go wrong when a model is non-congruent, encompassing tests
should only be conducted with respect to a ‘baseline’ congruent model; and is anyway
unnecessary otherwise since non-congruence already demonstrates inadequacies (for a
formal analysis, see Bontemps and Mizon, 2003).

To apply encompassing procedures, we need to have two non-nested models of
interest. For the first, use the ADL (1 lag) of CONS on INC and INFLAT; and for the
second CONS on OUTPUT with two lags of each, both from 1953(3). Formulate and
estimate them in that order, then from the Test menu, select Encompassing to produce:

Encompassing test statistics: 1953 (3) to 1992 (3)

M1 is: CONS on
Constant CONS_1 INC INC_1 INFLAT INFLAT_1

M2 is: CONS on
CONS_1 CONS_2 Constant OUTPUT OUTPUT_1 OUTPUT_2

Instruments used:
Constant CONS_1 INC INC_1 INFLAT
INFLAT_1 CONS_2 OUTPUT OUTPUT_1 OUTPUT_2

sigma[M1] = 1.08126 sigma[M2] = 2.03616 sigma[Joint] = 1.09367

Test Model 1 vs. Model 2 Model 2 vs. Model 1
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Cox N(0,1) = 0.1961 [0.8445] N(0,1) = -46.16 [0.0000]**
Ericsson IV N(0,1) = -0.1929 [0.8471] N(0,1) = 24.69 [0.0000]**
Sargan Chi^2(4) = 0.60786 [0.9622] Chi^2(4) = 108.59 [0.0000]**
Joint Model F(4,147) = 0.14861 [0.9634] F(4,147) = 94.099 [0.0000]**

The tests produced are those due to Cox (1961), (distributed asymptotically as N[0, 1]
on the null of encompassing; Ericsson (1983) (an IV-based test with the same limiting
distribution), another IV test developed by Sargan (1959), distributed as χ2 with the
degrees of freedom shown, and the F-test for each model being a valid simplification of
the linear union of the two models under test. The second model clearly does not en-
compass the first on any of the tests, whereas the first is not rejected by the second. We
conclude that the second is inferentially redundant and the first remains undominated.
Since empirical models can be designed to satisfy a range of criteria (see §13.10), en-
compassing tests against models designed by other investigators offer a useful check
against spurious findings.

13.8 Instrumental variables
The method of instrumental variables was developed to handle endogenous regressors
in models, but using limited information. It may happen that in the linear equation
(13.28), E [yt|xt] ̸= x′

tβ so that E [xtϵt] ̸= 0. An example is a behavioural model.
Then OLS estimation is not consistent for β (try proving this claim). Assume there is a
k × 1 vector zt such that:

E [yt | zt] = E [xt | zt]′ β (13.34)

so E [z′tϵt] = 0. The role of zt is purely instrumental in estimating β, and its use leads to
instrumental variables estimators (IVE) as follows (the case of more than k instruments
is handled automatically by PcGive, but β is not estimable when there are fewer than k
instruments).

We only consider the case where E [Z′ϵ] = 0 but in y = Xβ + ϵ, E [X′ϵ] ̸= 0.
Premultiply (13.29) by Z′:

Z′y = Z′Xβ + Z′ϵ (13.35)

When rank
(
T−1Z′X

)
= k, so that the matrix is invertible (which is also sufficient to

identify β: see White, 1984) then rank
(
T−1Z′Z

)
= k. Thus, setting Z′ϵ = 0,,which it

should be on average:
β̃ = (Z′X)

−1
Z′y (13.36)

which is the instrumental variables estimator. In large samples, its variance matrix is
estimated by:

σ̃2
ϵ

[
X′Z (Z′Z)

−1
Z′X

]−1

(13.37)

where:

ϵ̃ = y −Xβ̃ and σ̃2
ϵ =

ϵ̃′ϵ̃

T − k
. (13.38)
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Check that the formulae collapse to the OLS outcomes when Z = X. However, statis-
tics like R2 are not so easily defined.

The fourth case of §13.5 can be compared to the third when the IVs are vari-
ables in It−1. When §13.5.3 holds with ϵt being an innovation against It−1, then
E [yt|xt] = x′

tβ implies that E [yt|It−1] = β′E [xt|It−1] also. The converse does not
hold, however, otherwise types §13.5.3 and §13.5.4 would coincide. Check that you
can prove this claim. Since the failure of OLS is owing to the {xt} process being in-
formative about the parameter of interest, the analysis of exogeneity above is directly
relevant to clarifying when regression can be used.

The EqCM model of CONS in fact has INC endogenous owing to contemporaneous
feedback, so we now estimate it by IV, using 1-lagged values of DCONS and DINC as
instruments, as well as the other regressors (DINFLAT and the CI 1). The full sample
estimates and test statistics are:

EQ( 9) Modelling DCONS by IVE (using data.in7)
The estimation sample is: 1953 (3) to 1992 (3)

Coefficient Std.Error t-value t-prob
DINC Y 0.440453 0.1323 3.33 0.001
Constant 18.5348 1.884 9.84 0.000
DINFLAT -0.618109 0.2714 -2.28 0.024
CI_1 -0.200159 0.02026 -9.88 0.000

sigma 1.11086 RSS 188.804732
Reduced form sigma 1.9202
no. of observations 157 no. of parameters 4
no. endogenous variables 2 no. of instruments 5

Additional instruments:
[0] = DCONS_1
[1] = DINC_1

Specification test: Chi^2(1) = 0.5315 [0.4660]
Testing beta = 0: Chi^2(3) = 155.66 [0.0000]**

As can be seen by comparing with the earlier OLS results, the coefficients of INC and
INFLAT are smaller, and their standard errors much larger. The EqCM coefficient is
somewhat larger. The value of s is not much altered, but the much larger value of the
‘reduced form’ s (which measures the fit from regressing CONS on the instruments)
shows the importance of contemporaneous information. The specification χ2 tests for
the independence of the instruments and the errors (see §18.3.3 and Sargan, 1958) does
not reject, and the diagnostic tests yield similar outcomes to OLS. We conclude this
section with the recursive statistics graphs (no equivalent of the Chow tests is provided
for IV) shown in Figure 13.8. The parameters are reasonably constant, although that
for INFLAT still shows signs of changing around the oil crisis.
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Figure 13.8 Recursive constancy statistics for IV estimation

13.9 Inference and diagnostic testing

Many aspects of inference and testing have occurred above, so a preliminary knowl-
edge was implicitly assumed throughout. Formal derivations will not be presented (see
Godfrey, 1988) but the intuition behind the Lagrange Multiplier (LM)-test for residual
autocorrelation, ARCH etc. is useful. These statistics are essentially extrapolating from
the likelihood function value when a parameter has been restricted (usually to zero) to
what the likelihood value would be when the parameter was estimated. When the like-
lihood is quadratic, the score is linear and the extrapolation is completely successful
(that is, the outcome is the same as a likelihood-ratio test). Asymptotically, as likeli-
hoods are quadratic, LM-tests become fully powerful for the correct size (null rejection
frequency).

However, some statistics are LM-tests only under restrictive assumptions: for ex-
ample, the Durbin–Watson test is an LM-test when the regressors are fixed, but ceases
to be correct for lagged endogenous variables. A feature worth showing empirically is
the flattening of the residual correlogram in models with lagged dependent variables.
To do so, we contrast the residual autoregression coefficients and the associated F-test
with those entailed in the equivalent length LM-test. When the model is mis-specified
as a partial adjustment of CONS on INC and INFLAT, we find using the residuals:

Modelling Residual by OLS (using data.in7)
The estimation sample is: 1953 (4) to 1992 (3)

Coefficient Std.Error t-value t-prob Part.R^2
Residual_1 0.169655 0.08000 2.12 0.036 0.0286
Residual_2 0.112725 0.08067 1.40 0.164 0.0126
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Constant -0.00413131 0.1027 -0.0402 0.968 0.0000

sigma 1.28233 RSS 251.586866
R^2 0.0486202 F(2,153) = 3.91 [0.022]*

Error autocorrelation coefficients in auxiliary regression:
Lag Coefficient Std.Error

1 0.20089 0.08482
2 0.14669 0.08458

RSS = 251.956 sigma = 1.65761

Testing for error autocorrelation from lags 1 to 2
Chi^2(2) = 9.118 [0.0105]* and F-form F(2,152) = 4.6545 [0.0109]*

Both tests happen to reject the null, but the LM F-test is about 20% larger, and its
first-order autoregressive coefficient is about 25% larger.

A similar bias occurs even if there is no lagged dependent variable, but xt is
Granger-caused by y (see Granger, 1969, and Hendry and Mizon, 1999): again this
is easy to demonstrate. Many other tests can be computed using PcGive, but in general,
inference is better illustrated using Monte Carlo to simulate the actual distributions,
sizes and powers. Nevertheless, the methodology of modelling is open to analysis at
this stage, of which mis-specification tests are one aspect, so we turn to consider that.

13.10 Model selection
Some discussion, and empirical illustration, of the issue of model selection is imperative
if econometrics is to find any practical use, even as a set of critical skills. Unfortunately,
the topic is a vast one, often misunderstood (and subject to folklore, rather than fact),
and so prone to disastrous outcomes in a teaching context. Nevertheless, we will first
describe a general framework, then consider model design.

13.10.1 Three levels of knowledge

It is useful to distinguish between the three levels of knowledge potentially available in
a theoretical analysis. Write the data set as X1

T = (x1 . . .xT ) and denote the DGP by
the joint data density DX

(
X1

T |θ
)
. Then:

1. Both DX (·) and θ being known corresponds to a probability theory course: that is,
given DX (·|θ), what xs will be observed, and with what probabilities of lying in
various regions? The analyses in the first two sections above are examples of this
level of knowledge.

2. DX (·) known and θ unknown corresponds to an estimation and inference course,
that is, given X1

T and knowledge of DX (·), how should one estimate θ? This route
leads on to likelihood, maximum likelihood estimation etc., and characterizes the
state of knowledge implicit in Chapter 14.

3. Both DX (·) and θ unknown corresponds to a modelling course: that is, given only
X1

T how do we discover, design or develop useful models of the observables, and
what criteria characterize ‘useful’ etc.?
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Since (3) is the realistic situation in empirical econometrics, §13.6 discussed a num-
ber of the background issues. The illustrations above fell in an intermediate state, as we
knew the DGP, but did not use that knowledge except to explain the observed outcomes
– and the reader did not necessarily know the DGP.

Two important issues arise once the limited knowledge of (3) is granted: first, the
postulated likelihood function for an empirical model need not coincide with the actual
density function of the observables; and secondly, models will inevitably be simpli-
fications, not facsimiles of the economic mechanism. Both issues highlight that it is
crucial to test empirical claims rigorously – and that feature is certainly built into Pc-
Give. More fundamentally, we must first address the selection of the criteria by which
to judge models, and the problems deriving from our ability to design empirical models
to achieve such pre-specified criteria, even when the DGP does not satisfying those cri-
teria. The former was briefly addressed above in the context of congruency, so we turn
to the latter.

13.10.2 Modelling criteria

Sections 15.5 and 15.7 will consider more rigorously the range of relevant criteria for
model selection in terms of necessary conditions for congruence. As noted earlier, a
model is congruent when it matches the available evidence in all the dimensions exam-
ined (for example, has innovation, homoscedastic errors, constant parameters etc.). To
check whether or not a model does match the evidence is a ‘destructive’ application of
inference (testing in order to reject), and that destructive, or evaluation, aspect has been
covered (in part) already in §13.6 above (see Baba, Hendry, and Starr, 1992, for an ex-
ample analyzing US M1 demand). We now seek more constructive criteria, always with
the caveat that corroboration is not definitive (see e.g. Ericsson and Hendry, 1999).

Information criteria, which penalize for additional parameters more just than the
degrees of freedom adjustment to σ̂, are often used – but assume that many of the
necessary criteria for congruence are already satisfied. They are related to the use of
R2, R̄2 and σ̂2 as model-selection criteria, and in finite samples seem preferable to
those. PcGive provides three, namely the Schwarz, Hannan–Quinn, and final prediction
error criteria (see Chapter 18), and uses the Schwarz criterion in general-to-specific
modelling for selecting between congruent simplifications. However, within a class
of models under comparison, nothing justifies the ‘best’ of these by any information
criterion when they are all badly mis-specified – which emphasizes the prior need to
have established the ‘goodness’ of the class as a data description. Thus, we come back
to the need to develop congruent models, then select between these by encompassing.

That approach involves two stages: first formulate and test the general model; then
simplify it to a parsimonious, undominated relation (model reduction). The first step is
when we use mis-specification tests to evaluate the congruence of the general model;
the use of diagnostic tests at later stages (during simplification) is merely as an aid
to revealing invalid reductions. The statistical problems concern the probabilities of
the mis-specification tests (which is relatively easy in technical terms, and could be
resolved by a single ‘portmanteau’ test), and the consequences of ‘revising the model
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in the light of test rejections’. The latter is only amenable to general discussion, since if
the revision chanced to lead to specifying the DGP, the consequences would be brilliant
– but that seems unlikely. Thus, we next consider the problem of ‘covert’, or implicit,
design of models specifically to render insignificant any mis-specification tests.

13.10.3 Implicit model design

The reinterpretation of RALS estimation, following a significant residual autocorrela-
tion test, as covert, or implicit, design should now be clear. Irrespective of the cause
of the residual autocorrelation, a high enough order autoregressive error process fitted
to the residuals can remove residual autocorrelation – and hence ‘designs’ the model
according to a white-noise selection criterion. In the discussion of COMFAC, we noted
that the order of hypothesis testing was incorrect. One must first establish the congru-
ence of the general dynamic relation, then test for common factors in the dynamics,
and finally test their significance when they the provide a valid reduction. More gener-
ally, we saw the problems with unstructured searches such as simple-to-general at the
start of this chapter. A simple model of a complicated process can be made to ‘work’
by selecting a particular criterion (for example, white-noise residuals) and an associ-
ated test statistic, then successively correcting the problem until the test is insignificant.
However, a second test (for example, COMFAC, or constancy) may still reject, forcing
the entire exercise up to that point to be discarded, or lead to an unfounded strategy of
patching the next mistake. Rejection means that all previous inferences were invalid,
including even the existence of the initial problem. Thus, simple-to-general is an inef-
ficient research strategy. Apparent residual autocorrelation (say) could derive from the
wrong functional form (linear instead of log), or even parameter change: ‘fixing’ resid-
ual autocorrelation is then valueless. Also, alternative routes begin to multiply because
simple-to-general is a divergent branching process – there are many possible solutions
to each rejection, but the model evolves differently depending on which is selected, and
in what order. Moreover, when should you stop testing or correcting previous rejec-
tions? There are obvious dangers in stopping at the first non-rejection (see the analysis
of selecting the order of an autoregressive process in Anderson, 1971).

Conversely, with a pre-defined stopping point (that is, a general model in the back-
ground), a more coherent strategy is possible. The ordering of hypothesis tests is often
clearer, rejections do not lead to a loss of previous work, and the tests are nested. Once
the initial general model is rigorously tested for congruence, later tests are of reduc-
tions, not of model validity. Further, it is clear when to stop: when the selected model
parsimoniously encompasses the initial general model, but fails to do so on further sim-
plification. Of course, if the initial model is non-congruent, there is no alternative to
a generalization, but that is not a telling argument against general-to-simple (denoted
Gets below): a simpler starting point would fare even less well.
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13.10.4 Explicit model design

Consequently, PcGive is easiest to use for sequential simplification following the test-
ing for congruence of the initial general model (often called the statistical model: see
Spanos, 1986). Why simplify? We consider that parsimony is essential for test power
and for interpretability, and is often found to sustain parameter constancy. Collinearity
is not the driving force behind simplification: we saw above that models can be de-
signed to have orthogonal parameters, however many regressors there are. On the other
hand, orthogonality is useful for robustness and for testing for the marginal significance
of each variable in isolation (that is, without strong ceteris paribus assumptions), as
well as for interpretability. Thus, we aim to conclude with parsimonious models which
have orthogonal regressors, as well as satisfying the necessary conditions for both con-
gruence and encompassing.

Models can also be designed to be consistent with the available economic theory,
which leads to the concept of an econometric model (which again must be congruent
and should parsimoniously encompass the statistical model). Section 15.7.7 discusses
sequential simplification in the theory of reduction (the Progress menu tracks explicit
designs). Although it may seem to be useful to retain a subset of data throughout (for
example, by initially loading only a time subset of the available data), since Neyman–
Pearson testing for quality control can then be undertaken at the end of the analysis,
what would you do next if this led to rejection after six months’ work?

The process of model simplification can be surprisingly time consuming, so we have
developed an automated procedure called Autometrics, see Doornik (2009), Doornik
(2008). This follows on from Hendry and Krolzig (1999) and Hoover and Perez (1999).
There is now considerable Monte Carlo simulation evidence that Gets performs well,
selecting a model from an initial general specification almost as often as the same cri-
teria would when applied to the DGP (since test size leads to false rejections, and non-
unit power to false acceptances of the null even when the analysis commences from the
‘truth’). Chapter 15 discusses this in more detail. Hendry and Doornik (2014) treats
Autometrics and econometric model selection in general, including saturation-based es-
timators such as impulse indicator saturation.

A vast number of other aspects of model design could be illustrated, but we hope
that the flavour of econometric modelling is now both well established and has proved
interesting. Chapter 15 discusses the theory of reduction, model concepts, the informa-
tion taxonomy, and modelling more formally, building on Hendry (1987). An overview
is presented in Hendry and Richard (1983), and Hendry (1993), Hendry (2000a) pro-
vides a collection of papers on modelling methodology (see especially, Hendry, 2000b).
Hendry and Doornik (1994) and Hendry, Neale, and Srba (1988) extend the analysis to
linear systems modelling, including recursive estimation of simultaneous systems and
VARs. Hendry (1988) considers the refutability of the Lucas critique for models with
current-dated expectations variables using such techniques.

On the well-established subject of cointegration, many of the currently proposed es-
timators and tests are easily calculated (see Engle and Granger, 1987, and Phillips, 1987
among others). The Johansen (1988) maximum likelihood procedure is implemented
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in the system procedures discussed in Volume II. Or, for more extensive procedures,
including I(2) models, see the CATS program that is part of OxMetrics, Doornik and
Juselius (2018).

Monte Carlo is also useful as an illustrative tool, given the difficulty of analytical
derivations of sampling distributions; but that is the subject of a separate book with the
PcGive system Doornik and Hendry, 2022a).



Chapter 14

Statistical Theory

14.1 Introduction
We will review three main statistical tools: regression, maximum likelihood, and least
squares. To explain these closely related methods of estimating unknown parameters,
we first introduce the normal distribution for one variable, then the bivariate normal
distribution, and finally a multivariate normal. A regression is a conditional relation
and arises when looking at the conditional distribution of one random variable, denoted
Y , given values of another, denoted Z (capital letters here denote random variables,
and lower case their realizations). In a bivariate normal, the regression is linear, so has
the form E[Y |z] = α + βz when Z = z, which provides an introductory case. In
a multivariate normal, the regression remains linear, but involves several variables (k,
say), denoted by a vector z = (z1 . . . zk)

′.
Such regressions are defined in terms of unknown parameters, like α and β, and

these require estimation from sample data. When samples are randomly drawn from a
common population, and the linear regression holds for that population, then maximum
likelihood or least squares will deliver ‘good’ estimates in general. These methods are
described in §14.5 and §14.7.

14.2 Normal distribution

The normal, or Gaussian, density fx
(
x|µx, σ

2
x

)
of a random variable X is defined by:

fx
(
x | µx, σ

2
x

)
=
(
2πσ2

x

)− 1
2 exp

[
− (x− µx)

2

2σ2
x

]
(14.1)

where |µx| < ∞ and 0 < σ2
x < ∞ for x ∈ R. The normal density function reaches

a maximum at x = µx and is symmetric about µx which is the mean: E[X] = µx.
Its spread increases with σ2

x which is the variance: E[(X − µx)
2
] = σ2

x; the square
root σx =

√
σ2
x is the standard deviation. The normal distribution is denoted by X ∼

192
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N
[
µx, σ

2
x

]
, and read as: X is distributed as a normal random variable with mean µx

and variance σ2
x.

Let Y = (X − µx) /σx so that X = σxY + µx. This linear transform from X to
Y alters the density to:

fy (y | ·) =
(
2πσ2

x

)− 1
2 exp

[
− 1

2 y2
]
σx = (2π)

− 1
2 exp

[
− 1

2 y2
]
. (14.2)

This is the standardized form of the density, denoted by Y ∼ N [0, 1]. Note that fx (x) ≥
0 since the exponential function is always positive, and that the density integrates to
unity: ∫ ∞

−∞
(2π)

− 1
2 exp

[
− 1

2 y2
]

dy = 1.

14.3 The bivariate normal density

Consider two random variables denoted X and W . The correlation corr [X,W ] = ρ

between X and W is defined by:

ρ =
E [(X − µx) (W − µw)]√

E
[
(X − µx)

2
]
E
[
(W − µw)

2
] =

σxw
σxσw

where σxw is the covariance. It can be shown that −1 ≤ ρ ≤ 1. When X and W are
distributed according to a standardized bivariate normal distribution, the formula for
fx,w (x,w | ρ) is:

fx,w (x,w | ρ) =
(
2π
√

(1− ρ2)
)−1

exp

[
−
(
x2 − 2ρxw + w2

)
2 (1− ρ2)

]
. (14.3)

Since exp [·] has a non-positive argument, its value is positive but less than unity, and
hence: (

2π
√
(1− ρ2)

)−1

≥ fx,w (x,w) ≥ 0. (14.4)

For the standardized bivariate normal distribution, the covariance E[XW ] = σxw = ρ,
and ρ = 0 is necessary and sufficient to ensure independence between X and W .

Linear combinations of jointly normal variables are also normal. The proof is based
on deriving the distribution of the random variables (aX + bW :W ) where (X :W )

is bivariate normal and a ̸= 0.

14.3.1 Marginal and conditional normal distributions

The marginal distribution of W is normal, and from it we can obtain the conditional
distribution of X given W denoted fx|w (x|w). By definition, the marginal density of
W is:

fw (w) =

∫ ∞

−∞
fx,w (x,w) dx. (14.5)



194 Chapter 14 Statistical Theory

Calculating that expression for the standardized bivariate normal yields:∫ ∞

−∞

(
2π
√
(1− ρ2)

)−1

exp

[
−
(
x2 − 2ρxw + w2

)
2 (1− ρ2)

]
dx. (14.6)

The term in [·] can be rewritten as
[
(x− ρw)2 +

(
1− ρ2

)
w2
]

(a result of use below).

Since exp (a+ b) = exp (a) exp (b), then
∫∞
−∞ fx,w (x,w)dx is:

(
2π
√
(1− ρ2)

)−1
∫ ∞

−∞
exp

[
− (x− ρw)2

2
(
1− ρ2

)] · exp [−(1− ρ2)w2

2
(
1− ρ2

) ] dx

= (2π)
− 1

2 exp
(
− 1

2w
2
) ∫ ∞

−∞

(
2π
(
1− ρ2

))− 1
2 · exp

[
− (x− ρw)2

2
(
1− ρ2

)] dx.
(14.7)

The term inside the integral is the density of a normal random variable with mean
ρw and standard deviation

√
(1− ρ2) and hence the integral is unity. Thus, the

marginal distribution of W is the term before the integral, and so is N [0, 1]. Note that
(X − ρW ) /

√
(1− ρ2) and W are independent standardized normal random variables

since they have zero means, unit variances, are jointly normal, and have a covariance
of:

E

[
W (X − ρW )√

(1− ρ2)

]
= 0 (14.8)

which checks the density factorization.

14.3.2 Regression

The term inside the integral in (14.7) is the conditional density since it is also true that:

fx,w (x,w) = fx|w (x | w) fw (w) . (14.9)

Thus:
(X |W = w) ∼ N

[
ρw,

(
1− ρ2

)]
.

The conditional expectation, E [X|W = w] = ρw, considered as a function of w, is the
regression function, and ρ is the regression coefficient. The conditional mean is a linear
function of w. Because the random variables are standardized, ρ is also the correlation
coefficient (matching the requirement |ρ| ≤ 1) but in general, the regression coefficient
will not be ρ itself as shown below. The other conditional moments can be defined
in a similar way, so that V[X|W = w] is the conditional variance function. For the
normal distribution, V[X|W = w] = (1−ρ2) does not depend on w, so the conditional
variance is said to be homoscedastic (literally, constant variance).

Reverting to the unstandardized variables, fy,z(y, z) is:

1

2πσyσz

√
1− ρ2

exp

[
− (y − µy)

2

2 (1− ρ2)σ2
y

+
ρ (y − µy) (z − µz)

(1− ρ2)σyσz
− (z − µz)

2

2 (1− ρ2)σ2
z

]
(14.10)
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The marginal distribution of Z is N[µz, σ
2
z ], and by an equivalent factorization to (14.7)

since ρ = σyz/σyσz and σ2
y

[
1− ρ2

]
= σ2

y − (σyz)
2
/σ2

z :

(Y | Z = z) ∼ N
[
α+ βz, ω2

]
(14.11)

where:

α = (µy − βµz) , β =

(
σzy
σ2
z

)
and ω2 =

(
σ2
y −

σ2
yz

σ2
z

)
.

In general, therefore, β = ρσy/σz . There are four important aspects of (14.11). First,
for the normal distribution E [Y |Z = z] is a linear function of z. Unlike the nor-
mal distribution, many other distributions do not have linear regression functions, so
E [Y |Z = z] may depend on higher powers of z. Secondly, the parameters of the con-
ditional distribution, namely

(
α, β, ω2

)
depend on all the moments µy , µz , σ2

y , σzy and
σ2
z of fy,z (y, z). However, the parameter sets

(
α, β, ω2

)
and

(
µz, σ

2
z

)
are variation

free, in that for any given values of the second, the first set can freely take any values.
Further, since σ2

yz/σ
2
z is non-negative, the variance of the conditional distribution is

smaller than that of the unconditional distribution: that is, ω2 ≤ σ2
y . Finally, we have

already commented on homoscedasticity which still holds.

14.4 Multivariate normal

14.4.1 Multivariate normal density

Going beyond the bivariate distribution necessitates matrix formulations, but in many
respects these simplify the formulae. Denote the k-dimensional multivariate normal
density of a random vector V of length k by V ∼ Nk [µ,Σ] where E [V] = µ is
the vector of means (that is, for the ith element E [Vi] = µi), and Σ is the variance-
covariance matrix of rank k:

E
[
(V − µ) (V − µ)′

]
= Σ (14.12)

(that is, for the (i, j)th element E [(Vi − µi) (Vj − µj)] = σij). The multivariate normal
density function is:

fv (v) =
[
(2π)

k |Σ|
]− 1

2

exp
[
− 1

2 (v − µ)′ Σ−1 (v − µ)
]

(14.13)

where |Σ| is the determinant of Σ. When k = 2, (14.13) specializes to the bivariate
case above. If all elements of V are independently and identically distributed (IID),
having a normal distribution with mean µ and variance σ2, we can write this as V ∼
Nk

[
µι, σ2I

]
, in which ι is the k × 1 vector of ones, and I is the k × k identity matrix.

An alternative way of writing this is: Vi ∼ IN
[
µ, σ2

]
, i = 1, . . . , k.
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14.4.2 Multiple regression

To obtain multiple regression, partition v,µ and Σ conformably into:

v =

(
y

z

)
, µ =

(
µy

µz

)
and Σ =

(
σyy σzy

σyz Σzz

)
(14.14)

where the sub-vector z is (k − 1) × 1, and σzy = σ′
yz . The conditional distribution

of Y given Z = z is derived by factorizing the joint distribution. It is common in
econometrics to adopt a shorthand where the lower-case letters denote both the outcome
and the random variable (when no confusion is likely – but does sometimes ensue), and
we will do so henceforth. The marginal distribution of Z is a special case of the general
formula in (14.13):

fz (z) =
[
(2π)

(k−1) |Σzz|
]− 1

2

exp
[
− 1

2 (z− µz)
′
Σ−1

zz (z− µz)
]
. (14.15)

To derive the conditional distribution fy|z (y|z) of Y given z, express fv (·) in
the transformed space of (y|z) and z. From §14.7.5, using partitioned inversion (see
§14.7.5 below, or e.g., Hendry, 1995a, if this idea is unfamiliar):

Σ−1 =

(
σ−1
yy·z −σ−1

yy·zσyzΣ
−1
zz

−Σ−1
zz σzyσ

−1
yy·z Σ−1

zz

(
Ik−1 + σzyσ

−1
yy·zσyzΣ

−1
zz

) )
where σyy·z=(σyy − σyzΣ

−1
zz σzy) and:

|Σ| = |Σzz|
∣∣σyy − σyzΣ

−1
zz σzy

∣∣ = |Σzz| |σyy·z| .

Letting β′ = σyzΣ
−1
zz , then (v − µ)′ Σ−1 (v − µ) can be factorized as:

(y − µy)
2
σ−1
yy·z − 2 (z− µz)

′
βσ−1

yy·z (y − µy)

+ (z− µz)
′
βσ−1

yy·zβ
′ (z− µz) + (z− µz)

′
Σ−1

zz (z− µz) ,

since (y−µy)σ
−1
yy·zβ

′(z−µz) is a scalar and so equals its transpose; or on rearranging:

(y − µy − β′ (z− µz))
2
σ−1
yy·z + (z− µz)

′
Σ−1

zz (z− µz)

Substituting these results in fv (·), then fy|z (y|z) is:

[2πσyy·z]
− 1

2 exp

[
− 1

2

(y − α− β′z)
2

σyy·z

]
(14.16)

where α = µy − β′µz , or:

(Y | Z = z) ∼ N [α+ β′z, σyy·z] . (14.17)

The same four important points noted above hold for (14.17). Now, however,
E [Y |Z = z] is a linear function of the vector z, (α,β, σyy·z) depend on all the mo-
ments of fv (·), and as σyzΣ

−1
zz σzy is non-negative, σyy·z ≤ σyy .



14.4 Multivariate normal 197

14.4.3 Functions of normal variables: χ2, t and F distributions

Three important functions of normally distributed random variables are distributed as
the χ2, t, and F distributions. First, we define these three distributions, then consider
generalizations. Let Z ∼ N [0, 1] then:

Z2 ∼ χ2 (1) ,

where χ2 (1) is the chi-squared distribution with one degree of freedom. For a set of k
independent random variables Zi ∼ IN [0, 1]:

k∑
i=1

Z2
i ∼ χ2 (k) , (14.18)

where χ2 (k) is the χ2-distribution with k degrees of freedom.
Next, let X ∼ N

[
µx, σ

2
x

]
and let η (k) be a χ2 (k) independently distributed from

X then:

τ =
(X − µx)

√
k

σx
√
η (k)

∼ t (k)

where t (k) is Student’s t-distribution with k degrees of freedom.
Thirdly, let η1 (k1) and η2 (k2) be two independent chi-squareds of k1 and k2 de-

grees of freedom, then:

ϕ =
[η1 (k1) /k1]

[η2 (k2) /k2]
∼ F (k1, k2)

where F(k1, k2) is the F-distribution with k1 and k2 degrees of freedom. Note that
t(k)2 ∼ F(1, k) by using these three results. All of these distributions have been tab-
ulated (in more modern terms, programmed into computer packages), and occur fre-
quently in empirical research, in the sense that an underlying normal distribution is
often assumed.

In the context of the multivariate normal, let V ∼ Nk [µ,Σ], then:

η (k) = (V − µ)′ Σ−1 (V − µ) ∼ χ2 (k) . (14.19)

This result follows from the definition of a χ2 by noting that any positive definite matrix
Σ can be written as Σ = HH′ where H is a non-singular lower triangular matrix, so
that:

H−1 (V − µ) = ζ ∼ Nk [0, I] , (14.20)

and hence from (14.19):

η (k) = ζ′ζ =

k∑
i=1

ζ2i ∼ χ2 (k) . (14.21)

Partition ζ′ into the k1 and k2 independent components (ζ′1 : ζ′2), each of which is
normal, then for k1 + k2 = k:

η1 (k1) = ζ
′
1ζ1 ∼ χ2 (k1) and η2 (k2) = ζ

′
2ζ2 ∼ χ2 (k2) (14.22)

are also independent.
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14.5 Likelihood
Assume we have a sample x1 . . . xT , generated by a sequence of scalar random vari-
ables X1 . . . XT distributed with multivariate density fX(x1 . . . xT |θ) which is indexed
by one unknown parameter θ ∈ Θ ⊆ R. In empirical research, the underlying parame-
ter(s) are unknown, and need to be estimated from the observed outcomes of the random
processes. A major tool for accomplishing this is the likelihood function L (·) defined
in terms of the density function of the sample, but exchanging the roles of variables and
parameters:

fX (x1 . . . xT | θ) ∝ L (θ | x1 . . . xT ) for θ ∈ Θ. (14.23)

fX (·|θ) maps from RT to R+, whereas L (θ|x1 . . . xT ) maps from R to R+, so they
are linked by a function φ (x) which does not depend on θ. Any monotonic transfor-
mation of L (·) is also admissible, and this feature is useful when working with the
log-likelihood function, and its first derivative. We set φ (x) to unity so that the integral
of the likelihood function is unity for a single random variable x:∫ ∞

−∞
L (θ | x) dx = 1. (14.24)

The density function fX (·|θ) describes the mechanism generating observations on
the random variables. (In other chapters, this mechanism is called the data generation
process (DGP), and the joint density is then written as DX (·).) For an independent sam-
ple x1 . . . xT of T observations on the random variable X , since the joint probability is
then the product of the individual probabilities:

fX (x1 . . . xT | θ) =
T∏

t=1

fx (xt | θ) . (14.25)

For a given value of θ, the outcomes differ owing to random variation which is charac-
terized by the form of fx (·): for example, the location, spread, and shape of the distri-
bution of a random sample (x1 . . . xT ) are determined by fx (·). At different points in
the parameter space, the distribution also differs, so when the impact of distinct values
of θ on fx (·) is sufficiently marked, we might hope to infer what the value of θ is, taking
into account the randomness arising from fx (·).

For example, when X ∼ IN [µx, 1] and µx = 0, then |xt| < 2 will occur roughly
95% of the time, whereas when µx = 5, almost every observed x-value will exceed 2.
Thus, the data on X yield information on µx, and from a sufficiently large sample, we
may be able to determine the unknown parameter value precisely.

Since fX (x) ≥ 0 for all x = (x1 . . . xT ), we can take the logarithm of fX (x|θ) and
hence of L (θ|·), which is denoted by ℓ (θ|·):

ℓ (θ | x1 . . . xT ) = log L (θ | x1 . . . xT ) . (14.26)

For an independent sample of T observations on X , using (14.25):

ℓ (θ | x1 . . . xT ) = log

T∏
t=1

fx (xt | θ) =
T∑

t=1

ℓ (θ | xt) . (14.27)
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Thus, the log-likelihood of an independent sample is the sum of the individual log-
likelihoods.

14.6 Estimation

Maximum likelihood estimation (MLE) locates the value θ̂ of θ which produces the
highest value of the log-likelihood:

θ̂ = argmaxθ∈Θ ℓ (θ | x) = argmaxθ∈Θ

T∑
t=1

ℓ (θ | xt) (14.28)

where the second equality holds for independent Xs. Since we are considering the
sample realization X = x, ℓ (θ|x) is written with the realization as an argument, but is
thought of as a function of the random variable X as in (14.29) below. Thus, it makes
sense to take the expectation of ℓ (θ|x), to consider the large sample distribution of
functions of ℓ (θ|x) etc.

The form of any MLE depends on fX (·). If the Xt are IID with a univariate normal
distribution, θ is a two dimensional vector denoted by θ′ =

(
µx, σ

2
x

)
and so:

ℓ (θ | xt) = − 1
2 log (2π)− log (σx)−

(xt − µx)
2

2σ2
x

= ℓt. (14.29)

Hence, for an independent sample (x1 . . . xT ):

ℓ (θ | x) = −T
2 log (2π)− T log (σx)− 2σ−2

x

∑T
t=1 (xt − µx)

2

= −T
2

(
log (2π) + log

(
σ2
x

)
+ σ−2

x

[
σ̂2
x + (µx − µ̂x)

2
]) (14.30)

where µ̂x = T−1
∑T

t=1 xt and σ̂2
x = T−1

∑T
t=1 (xt − µ̂x)

2. All the sample infor-
mation is ‘concentrated’ in (µ̂x, σ̂

2
x), so these statistics are sufficient for

(
µx, σ

2
x

)
, in

that the second line of (14.30) no longer depends explicitly on the {xt}. From (14.30),
ℓ (θ|x) is maximized by minimizing [σ̂2

x + (µx − µ̂x)
2
]/σ2

x. Setting µx = µ̂x achieves
the smallest value of the second component, and as σ̂2

x corresponds to the smallest value
of the sum of squares, σ̂2

x = σ2
x lowers the remaining term to unity. The next section

derives the MLE more formally.

14.6.1 The score and the Hessian

When the log-likelihood is differentiable, ℓ (θ|x) can be maximized by differentiating
with respect to θ and equating to zero (a necessary condition for a maximum). The first
derivative of ℓ (·) with respect to θ is the score, denoted by:

q (θ | x) = ∂ℓ (θ|x)
∂θ

=

T∑
t=1

∂ℓt (θ|x)
∂θ

=

T∑
t=1

qt (θ | x) (14.31)
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where the second and third equalities hold for independent Xs. Solving for θ̂ such that
q(θ̂) = 0 yields the MLE (when the second derivative is negative). In the case of the
normal distribution illustration (remember that we differentiate with respect to σ2, not
σ):

q (θ | x) =
(
q (µx|x)
q
(
σ2
x|x
) ) =

(
T (µ̂x − µx) /σ

2
x

− 1
2Tσ

−2
x

[
1−

{
σ̂2
x + (µ̂x − µx)

2
}
/σ2

x

] ) .
(14.32)

Then q(θ̂|x) = 0 occurs at θ̂′ =
(
µ̂x, σ̂

2
x

)
, where, as before:

µ̂x = T−1
T∑

t=1

Xt and σ̂2
x = T−1

T∑
t=1

(Xt − µ̂x)
2 (14.33)

which are the sample mean and (unadjusted) variance. At the maximum θ̂:

ℓ
(
θ̂ | x

)
= − 1

2 T
(
log (2π) + log

(
σ̂2
x

)
+ 1
)
. (14.34)

The second derivative of ℓ (θ|x) with respect to θ is the Hessian of the likelihood,
and evaluated at θ̂ can be shown to be negative. Differentiate q (θ|x) with respect to θ
once more:

H (θ | x) = ∂2ℓ (θ|x)
∂θ∂θ′

=

T∑
t=1

∂2ℓt (θ|x)
∂θ∂θ′

=

T∑
t=1

Ht (θ | x) (14.35)

where the last two equalities hold for independent Xs. Thus, for the example from
(14.32):

H (θ | x) =
(

−T/σ2
x −T (µ̂x − µx) /σ

4
x

−T (µ̂x − µx) /σ
4
x −Tσ−6

x {σ̂2
x + (µ̂x − µx)

2}+ 1
2Tσ

−4
x

)
(14.36)

and when evaluated at θ̂:

H
(
θ̂ | x

)
=

(
−T σ̂−2

x 0

0 − 1
2T σ̂

−4
x

)
,

which is negative definite, shows that the parameter estimates are uncorrelated, and that
their precisions both depend inversely on σx and directly on T .

14.6.2 Maximum likelihood estimation

The justification for maximum likelihood is that the principle is general, and when the
form of the data density is known and the sample size is sufficiently large, MLE usually
yields estimators of θ that are as good as can be obtained. We now demonstrate that
claim in a simple setting.
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14.6.3 Efficiency and Fisher’s information

Subject to reasonable regularity conditions, which ensure that the required derivatives
exist etc., maximum likelihood estimators are consistent, and also tend to be efficient
in large samples, such that no other method dominates MLE. This last claim can be
proved to hold in finite samples for the special class of unbiased estimators defined by
E[θ̂] = θ ∀θ ∈ Θ, and this section outlines the proof in a scalar case. To simplify
notation, we drop the reference to x in the arguments. The population value of the
parameter is denoted by θp.

Five steps are required in the proof when ℓ (θ) is a quadratic function of θ so that
q(θ) is linear in θ. Hence E[q(θp)

2] = H(θp) = H is constant, and higher-order
derivatives vanish: such a condition provides a good approximation in large samples.
1. Expand q(θp) around q(θ̂) in a Taylor series:

q (θp) = q
(
θ̂
)
+

dq (θ)
dθ ⌋θ̂

(
θp − θ̂

)
+ 1

2

d2q (θ)
dθ2 ⌋θ̂

(
θp − θ̂

)2
. (14.37)

Since q(θ̂) = 0 and d2q (θ) /dθ2 = 0 because H is constant:

q (θp) = H ·
(
θp − θ̂

)
(14.38)

so that: (
θ̂ − θp

)
= −H−1q (θp) . (14.39)

Consequently, the MLE θ̂ differs from θp by a linear function of q (θp). That last ex-
pression holds generally, but only as an approximation when H (θ) is not constant,
needing iterative solution.

2. Next, E[q(θp)] = 0. Since we solve q(θ̂) = 0 to obtain θ̂, it is important that on
average E[q(θp)] is indeed zero. Taking expectations in (14.38), for linear score
functions q(θp), E[θ̂] = θp, so the MLE is unbiased under our assumptions.

3. Since E[q(θp)] = 0, the variance of q(θp) is E[q(θp)
2] = I(θp) which is Fisher’s

information. The key result is that:

E
[
q (θp)

2
]
= I (θp) = −E [H (θp)] ,

and hence Fisher’s information is the negative of the Hessian (ℓ (θ|x) must be
equated with Dx (x|θ) in such derivations, although ℓ (θ|x) is specified by the in-
vestigator and Dx (x|θ) by nature, so take care in practice).

4. The variance of θ̂ can be obtained from its definition as E[(θ̂− θp)2] and the Taylor-
series expansion of q(θp) around q(θ̂). With constant H , from (14.39):

E

[(
θ̂ − θp

)2]
= E

[
H (θp)

−1
q (θp)

2
H (θp)

−1
]
= H−1IH−1 = I−1 (14.40)

using (1) and (3). Thus, V[θ̂] is the inverse of Fisher’s information. This result is of
sufficient importance to merit a separate section, which then solves the fifth step.
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14.6.4 Cramér–Rao bound

(5) Let α̂ be any other unbiased estimator of θ so that E [α̂] = θp with variance
E[(α̂ − θp)

2] = V . We now show that V ≥ I−1 which proves that the MLE
is the minimum-variance unbiased estimator here. First, a surprising intermediate
result: E[q(θp)α̂] = 1 ∀α̂ such that E [α̂] = θp. All unbiased estimators have a
covariance of unity with the score. This is most easily seen with θ̂ as the unbiased
estimator, using the results in (1), (2) and (4). Now the squared correlation between
q(θp) and α̂ is:

r2 =
(E [q (θp) α̂])

2

V · I
=

1

V I
. (14.41)

Since a squared correlation must be between 0 and 1, V · I ≥ 1 so that V ≥ I−1.
This result is the Cramér–Rao bound, and shows that no unbiased estimator α̂ can
have a smaller variance than I(θp)−1; since the unbiased MLE had that variance, it
is not dominated by any other α̂. More generally, the Cramér–Rao bound holds for
most MLEs as T →∞.

14.6.5 Properties of Fisher’s information

Several other properties of Fisher’s information merit note. First, since under indepen-
dence q (θp) =

∑T
t=1 qt (θp):

E
[
q (θp)

2
]

= E

[(∑T
t=1 qt (θp)

)2]
= E

[∑T
s=1

∑T
t=1 qt (θp) qs (θp)

]
=

∑T
s=1

∑T
t=1 E [qt (θp) qs (θp)] .

(14.42)
Under independence, E[qt(θp)qs(θp)] = 0, but otherwise is non-zero – which will pose
problems for estimation and inference.

Secondly, when E[qt(θp)qs(θp)] = 0, (14.42) becomes:

E
[
q (θp)

2
]
=

T∑
t=1

E
[
qt (θp)

2
]
=

T∑
t=1

It (θp) = I(T ) (θp) . (14.43)

Thus, Fisher’s information is additive for independent random variables. When
E[qt(θp)

2] is constant over t, then I(T )(θp) = TI0(θp) where I0(θp) is Fisher’s in-
formation for a single sample point. From the fact that I(T )(θp) is TI0(θp), we see that
information increases linearly with sample size in this setting. Conversely, when It(θp)
is not constant, inference difficulties may again ensue: see the discussion of HCSEs in
Chapter 13.

When It(θp) is constant over t, V[q(θp)] = TI0(θp), so when q(θp) is a linear
function of θp for a normally distributed random variable (as in (14.30) when σ2

x is
known):

q (θp) ∼ N [0, TI0 (θp)] so that
√
Tq (θp) ∼ N [0, I0 (θp)] . (14.44)
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From (14.39), (θ̂ − θp) is a linear function of q(θp), so:

√
T
(
θ̂ − θp

)
∼ N

[
0, I0 (θp)−1

]
. (14.45)

This result is dependent on many strong assumptions which can be weakened.
Finally, when there is a set of sufficient statistics g (X), since h (x) does not depend

on θ, q (θ;x) is a function of g (x), and hence so is I (·). Thus, the MLE retains all of
the available information.

14.6.6 Estimating Fisher’s information

Having established the MLE θ̂ of θ and how to solve for it from q(θ̂) = 0, we
now consider how to estimate V[θ̂] = TI0(θp)−1. The first way uses the result that
TI0(θp) = −E[H(θp)], which holds more generally than the quadratic log-likelihood
considered above. On replacing θp by θ̂:

V
[̂
θ̂
]
= −H

(
θ̂
)−1

. (14.46)

Since θ̂ converges on θp as T → ∞ owing to consistency, whereas from (14.45),√
T (θ̂ − θp) has a well-defined distribution, then −T [H(θ̂)−1] tends to I0(θp)−1.

However, q(θ̂)2 cannot be used as an estimator of V[θ̂] since q(θ̂) = 0. Nevertheless,
since q(θ̂) =

∑T
t=1 qt(θ̂), and qt(θ̂) ̸= 0 ∀t, the estimator:

V
[̂
θ̂
]
=

T∑
t=1

qt

(
θ̂
)2

(14.47)

is feasible. Later, we confront the issues which arise when modelling data, since in
any realistic application, the form of fX (x|θ) is unknown, and one cannot be sure that
the postulated likelihood function is proportional to the actual data density. Many of
the above results depend on that identity, and important practical issues arise when it is
invalid.

14.7 Multiple regression

Since linear models play a major role in econometrics, we consider the empirical coun-
terpart of regression. This section formulates the conditional multiple regression model
in §14.7.1, and the least squares estimator of its parameters in §14.7.2, followed by dis-
tributional results in §14.7.3. Parameter subset estimation is developed in §14.7.4, and
partitioned inversion in §14.7.5. Finally, multiple and partial correlation are discussed
in §14.7.6 and §14.7.7.
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14.7.1 The multiple regression model

The notation adopted for the linear regression model, viewed as the mechanism which
generated the observed data, is:

yt = β
′xt + ut with ut ∼ IN

[
0, σ2

u

]
(14.48)

where β = (β1 . . . βk)
′ ∈ Rk is the k × 1 parameter vector of interest and xt =

(x1t . . . xkt)
′. Then β′xt =

∑k
i=1 βixit. One of the elements in xt is unity with

the corresponding parameter being the intercept in (14.48). We interpret (14.48) as a
regression equation, based on a joint normal distribution for (yt : x′

t) conditional on xt

so that from above:

E [yt | xt] = β
′xt with E [xtut] = 0.

Hence E[(yt−γ′xt)
2] is minimized at σ2

u by the choice of γ = β. Chapter 15 considers
the conditions necessary to sustain a factorization of a joint density into a conditional
model of yt given xt, and a marginal model for xt which is then ignored, and Chapter
13 considers other interpretations of linear equations like (14.48) and their implications.

Grouping the observations, so that y′ = (y1 . . . yT ) and X′ = (x1 . . .xT ), which
is a T × k matrix with rank(X) = k and u′ = (u1 . . . uT ):

y = Xβ + u with u ∼ NT

[
0, σ2

uI
]
. (14.49)

To simplify the derivations, we assume that E [y|X] = Xβ, and hence E [X′u] = 0.
Although conditioning on X is too strong to be justifiable in economics, and essentially
entails an experimental setting, most of the results hold in large samples under weaker
assumptions. The assumptions about u are almost equally strong, but less objectionable
in practice given the discussion in Chapter 15.

14.7.2 Ordinary least squares

The algebra of what is conventionally called ordinary least squares (OLS) estimation
can now be established: the OLS estimator is also the MLE under our present assump-
tions (see §14.6.2). However, the following algebraic results do not depend on the
actual statistical status of X, and hold even when conditioning is invalid. Naturally, any
statistical results do depend on the status of X, and the assumptions about u.

OLS estimation seeks to find the value β̂ of β which minimizes the quadratic func-
tion:

h (β) = (y −Xβ)
′
(y −Xβ) . (14.50)

Either by differentiating h (β) with respect to β and solving the resulting expression
equated to zero, or using the sample analogue of E [X′u] = 0, namely X′(y−Xβ̂) = 0,
the best value is given by:

β̂ = (X′X)
−1

X′y. (14.51)

It can be verified that the value β̂ of β in (14.51) minimizes h (β) in (14.50).
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To determine the properties of β̂ as an estimator of β substitute for y from (14.49):

β̂ = β + (X′X)
−1

X′u (14.52)

then taking expectations conditional on X:

E
[(
β̂ − β

)
| X
]
= E

[
(X′X)

−1
X′u | X

]
= (X′X)

−1
X′E [u] = 0. (14.53)

Next, V[β̂] is given by:

E

[(
β̂ − β

)(
β̂ − β

)′
| X
]

= E
[
(X′X)

−1
X′uu′X (X′X)

−1 | X
]

= (X′X)
−1

X′E [uu′]X (X′X)
−1

= σ2
u (X

′X)
−1
.

(14.54)

Further, letting û = (y − Xβ̂), σ2
u can be estimated by (note that the least-squares

estimate of the variance is scaled by T − k, whereas the maximum-likelihood estimate
of (14.33) is scaled by T ):

σ̂2
u =

û′û

(T − k)
(14.55)

when û′û =RSS (an acronym for residual sum of squares). In turn, V[β̂] can be esti-
mated by:

V
[̂
β̂
]
= σ̂2

u (X
′X)

−1
. (14.56)

From (14.49)–(14.54), since β̂ is a linear function of the normally distributed vector u:

β̂ ∼ Nk

[
β, σ2

u (X
′X)

−1
]
. (14.57)

Consequently, from (14.57):

η1 =

(
β̂ − β

)′
(X′X)

(
β̂ − β

)
σ2
u

∼ χ2 (k) . (14.58)

Let M = IT −X (X′X)
−1

X′, which is a symmetric and idempotent T ×T matrix,
such that M = M′, M = M2 and M (IT −M) = 0. From (14.58) and (14.51):

σ2
uη1 =

[
u′X (X′X)

−1
]
(X′X)

[
(X′X)

−1
X′u

]
= u′X (X′X)

−1
X′u

= u′ (I−M)u.

(14.59)

Further, M annihilates X since MX = 0, so that:

My = y −X (X′X)
−1

X′y = y −Xβ̂ = û = Mu, (14.60)
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where the last equality follows from premultiplying (14.49) by M. Consequently:

RSS = y′My = u′Mu. (14.61)

Since M is real and symmetric, let M = HΛH′ where Λ is the diagonal matrix
of eigenvalues and H is the non-singular matrix of eigenvectors with H′H = IT . By
idempotency:

M2 = HΛH′HΛH′ = HΛ2H′ = M = HΛH′

so Λ2 = Λ and all the eigenvalues of M are either zero or unity. Thus, rank(M) =

tr (M) = tr (Λ) so:

rank (M) = tr
(
IT −X (X′X)

−1
X′
)
= tr (IT )− tr

(
(X′X)

−1
X′X

)
= (T − k)

(14.62)
There are (T − k) unit and k zero eigenvalues, and M is singular of rank (T − k).

14.7.3 Distributional results

Since u ∼ NT [0, σ2
uI], then u′u/σ2

u ∼ χ2 (T ). Because M is singular, we cannot apply
the theorems of §14.4.3 on the distributions of functions of normal variables to Mu or
u′Mu. An alternative route is nevertheless feasible. Collect all of the unit eigenvalues
of M in the first (T − k) diagonal elements of Λ, with the last k diagonal elements
being zeros. Let:

ν = H′u ∼ NT

[
0, σ2

uH
′H
]
= NT

[
0, σ2

uI
]

and consider the quadratic form:

u′Mu = u′HΛH′u = ν′Λν = ν′
1ν1, (14.63)

where ν′ = (ν′
1 : ν′

2) and ν1 and ν2 correspond to the unit and zero roots respectively
in Λ, so that ν1 denotes the first (T − k) elements of ν corresponding to the unit eigen-
values of M. Then ν1 ∼ NT−k[0, σ2

uI], and since ν ∼ NT [0, σ2
uI], ν1 and ν2 are

distributed independently. Hence:

η2 =
u′Mu

σ2
u

=
ν′
1ν1
σ2
u

∼ χ2 (T − k) . (14.64)

This result shows that an idempotent quadratic form in standardized normal variables is
distributed as a χ2 with degrees of freedom equal to the rank of the idempotent matrix.
Also:

η2 =
(T − k) σ̂2

u

σ2
u

so that σ̂2
u ∼

σ2
u

(T − k)
χ2 (T − k) . (14.65)

The properties of σ̂2
u can be calculated from this last result using the χ2-distribution.

As η2 ∼ χ2 (T − k), then E [η2] = T − k and V [η2] = 2 (T − k). Since (IT −M) =

H (IT −Λ)H′:
u′ (IT −M)u = ν′ (IT −Λ)ν = ν′

2ν2,
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so η1 = ν′
2ν2/σ

2
u. As ν1 and ν2 are distributed independently, η1 and η2 are also

independent, matching their being χ2 (k) and χ2 (T − k) respectively. Tests of H0:
β = 0 (or components thereof) follow from these results using the F-distribution, since
y = u when β = 0, so that on H0:

u′ (IT −M)u = y′ (IT −M)y = β̂′ (X′X) β̂, (14.66)

and hence:

ηβ =
(T − k) η1

kη2
=

(T − k)y′ (I−M)y

ky′My
=

(T − k) β̂′ (X′X) β̂

kRSS H̃0
F (k, T − k) .

(14.67)
The last expression for ηβ is the statistic which is actually computed. If β ̸= 0, then
from (14.57) the numerator of ηβ becomes a non-central χ2 with non-centrality param-
eter β′X′Xβ ≥ 0, whereas the denominator is unchanged. Thus, the statistic ηβ will
on average lead to values larger than the F (k, T − k) anticipated under the null.

Finally, from (14.57) each element β̂i of β̂ is normally distributed with variance
given by σ2

u times the ith diagonal element dii of (X′X)
−1 and is independent of η2.

Thus: (
β̂i − βi

)
σ̂u
√
dii

∼ t (T − k) , (14.68)

where t (T − k) denotes Student’s t-distribution with (T − k) degrees of freedom and:

σ̂u
√
dii = SE

(
β̂i

)
(14.69)

is the standard error of β̂i. On the hypothesis H0: βi = 0:

τi =
β̂i

SE
(
β̂i

)
H̃0

t (T − k) (14.70)

which is a computable statistic from sample evidence alone.

14.7.4 Subsets of parameters

Consider estimating a subset of kb parameters βb of β where ka + kb = k. Partition
X = (Xa : Xb) and β′ = (β′

a : β′
b) so that:

y = Xaβa +Xbβb + u. (14.71)

Let Ma = IT −Xa (X
′
aXa)

−1
X′

a which implies that MaXa = 0 then:

May = MaXbβb +Mau (14.72)

and hence:
β̂b = (X′

bMaXb)
−1

X′
bMay. (14.73)



208 Chapter 14 Statistical Theory

Consequently, β̂b can be calculated by first regressing Xb on Xa and saving the resid-
uals (MaXb), then regressing y on those residuals. Notice that the regressors need
‘corrected’, but the regressand does not. Thus, procedures for ‘detrending’ (for exam-
ple), can be justified as equivalent to adding a trend to the model (see Frisch and Waugh,
1933, who first proved this famous result). From (14.72) and (14.73):

β̂b = βb + (X′
bMaXb)

−1
X′

bMau (14.74)

so that
V
[
β̂b

]
= σ2

u (X
′
bMaXb)

−1
. (14.75)

Thus:
β̂b ∼ Nkb

[
βb, σ

2
u (X

′
bMaXb)

−1
]
. (14.76)

Hypothesis tests about βb follow analogously to the previous section. In particular,
from §14.7.3 and (14.76):

ηb =

(
β̂b − βb

)′
(X′

bMaXb)
(
β̂b − βb

)
kbσ̂2

u

∼ F (kb, T − k) . (14.77)

When kb = 1, this matches (14.70) under H0: βb = 0, and when kb = k, (14.77)
reproduces (14.67) under H0: β = 0. A useful case of (14.77) is kb = (k − 1) and
Xa = ι (a T × 1 vector of ones), so all coefficients other than the intercept are tested.

If, instead of estimating (14.71), Xa is omitted from the model in the incorrect
belief that βa = 0, the equation to be estimated becomes:

y = Xbβb + e (14.78)

The resulting estimator of βb, denoted by β̃b = (X′
bXb)

−1
X′

by, confounds the effects
of Xa and Xb:

β̃b = (X′
bXb)

−1
X′

b (Xaβa +Xbβb + u)

= Bbaβa + βb + (X′
bXb)

−1
X′

bu
(14.79)

where Bba = (X′
bXb)

−1
X′

bXa. Thus:

E
[
β̃b

]
= Bbaβa + βb, (14.80)

which equals βb if and only if Bbaβa = 0. Moreover, let Mb have the same form as
Ma but using Xb then:

V
[̂
β̃b

]
= σ̃2

u (X
′
bXb)

−1 where σ̃2
u =

y′Mby

(T − kb)
=

ũ′ũ

(T − kb)
(14.81)

when ũ = y −Xbβ̃b and:

E
[
σ̃2
u

]
= σ2

u +
β′
aX

′
aMbXaβa

(T − kb)
≥ σ2

u. (14.82)
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Conventionally, β̃b is interpreted as a biased estimator of βb with bias given by Bbaβa.
The estimated variance matrix in (14.81) may exceed, or be less than, that given by
the relevant sub-matrix of (14.56), in the sense that the difference could be positive or
negative semi-definite.

The sign of an estimated coefficient from (14.78) can be the same as, or the opposite
to, that expected from prior theoretical reasoning, and the latter is sometimes called a
‘wrong sign’. We interpret the outcome in (14.80) as delivering a different coefficient
γb = Bbaβa + βb than βb, consonant with the following argument. First:

Xa ≡MbXa + (IT −Mb)Xa = MbXa +XbBba. (14.83)

Consequently, from (14.71):

y = (MbXa +XbBba)βa +Xbβb + u

= Xbγb + (u+MbXaβa)

= Xbγb + v

(14.84)

where E [v] = MbXaβa ̸= 0, but since MbXb = 0:

E [X′
bv] = E [X′

bu] +X′
bMbXaβa = 0. (14.85)

Thus, the model is implicitly reparametrized by omitting Xa, and OLS is an unbiased
estimator of γb despite E [v] ̸= 0. Under more general assumptions, a related large-
sample result holds.

14.7.5 Partitioned inversion

The results on estimating subsets of parameters can be obtained by partitioned inversion
of (X′X). Consider the matrix (X′X)

−1. Let H =(X′
bMaXb) and G = (X′

aMbXa),
then:(

X′
aXa X′

aXb

X′
bXa X′

bXb

)−1

=

(
(X′

aMbXa)
−1 − (X′

aMbXa)
−1

B′
ba

−Bab (X
′
bMaXb)

−1
(X′

bMaXb)
−1

)
(14.86)

where Bab = (X′
aXa)

−1
X′

aXb. Further, X′y can be partitioned conformably as:(
X′

ay

X′
by

)
(14.87)

and multiplication of (14.87) by (14.86) delivers (14.73) together with corresponding
expressions for estimating βa; the coefficient variance matrix follows from (14.86).

Alternatively, when (X′X)
−1 is given by:(

(X′
aMbXa)

−1 − (X′
aMbXa)

−1
B′

ba

−Bba (X
′
aMbXa)

−1
(X′

bXb)
−1

+Bba (X
′
aMbXa)

−1
B′

ba

)
(14.88)
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then multiplication of (14.87) by (14.88) delivers for the second row:

β̂b = −Bba (X
′
aMbXa)

−1
X′

ay+(X′
bXb)

−1
X′

by +Bba (X
′
aMbXa)

−1
B′

baX
′
by

= β̃b −Bba (X
′
aMbXa)

−1
X′

a

(
IT −Xb (X

′
bXb)

−1
X′

b

)
y

= β̃b −Bbaβ̂a

(14.89)
from which it follows that:

β̃b = β̂b +Bbaβ̂a. (14.90)

Then (14.90) is the exact estimation analogue of (14.80): the simple regression estimate
of βb equals the corresponding multiple regression estimate of βb plus the auxiliary
regression matrix multiplied by the multiple regression estimate of the omitted effect.
Consequently, a regression coefficient is interpretable as a partial derivative of y with
respect to the relevant x only to the extent that all other effects have either been included
in the regression, or are orthogonal to the variables under study.

14.7.6 Multiple correlation

Let ŷ = Xβ̂, then y = ŷ + û and X′û = 0 since MX = 0. Thus, ŷ′û = 0 implying
that:

y′ŷ = ŷ′ŷ and y′y = ŷ′ŷ + û′û. (14.91)

A natural choice to measure the ‘goodness of fit’ between y and ŷ = Xβ̂ is their cor-
relation coefficient. When a constant is present in X as the vector of ones ι, since
MX = 0, then ι′û = ι′Mû = 0 and T−1ι′y = T−1ι′ŷ = ȳ (the sample mean).
Consequently, the squared correlation between y and ŷ is given by:

R2 (y, ŷ) =

[
(y − ιȳ)′ (ŷ − ιȳ)

]2[
(y − ιȳ)′ (y − ιȳ)

] [
(ŷ − ιȳ)′ (ŷ − ιȳ)

] . (14.92)

Substituting (y − ιȳ) = (ŷ − ιȳ) + û takes deviations about means in y = ŷ + û, so
using the results that ŷ′û = 0 and ι′û = 0:

R2 =
(ŷ − ιȳ)′ (ŷ − ιȳ)
(y − ιȳ)′ (y − ιȳ)

, (14.93)

and hence: (
1− R2

)
=

û′û

(y − ιȳ)′ (y − ιȳ)
.

R2 is the squared multiple correlation between y and x. The statistic ηb in (14.77) for
testing the hypothesis that all coefficients other than the intercept are zero can be written
as a function of R2/

(
1− R2

)
. On H0: βb = 0, since ŷ = ιβ̂a+Xbβ̂b and:

β̂a = ȳ − x̄′
bβ̂b = ȳ − T−1ι′Xbβ̂b,
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then:
ŷ = ιȳ − T−1ιι′Xbβ̂b+Xbβ̂b = ιȳ +MaXbβ̂b,

as Ma =
(
IT − ι (ι′ι)−1

ι′
)
=
(
IT − T−1ιι′

)
, so that:

ηb =
(T − k) β̂′

bX
′
bMaXbβ̂b

(k − 1) û′û
=

(T − k) (ŷ − ιȳ)′ (ŷ − ιȳ)
(k − 1) û′û

=
(T − k)R2

(k − 1) (1− R2)
.

(14.94)
As R2 → 1, highly ‘significant’ results are bound to occur independently of their sub-
stance.

14.7.7 Partial correlation

The notion of a partial correlation, or a partial regression coefficient, is fundamental to
interpreting econometric evidence. For empirical modelling, equations like (14.48) are
usually formulated with the implicit assumption that:

∂yt
∂xit

= βi for i = 1, . . . , k. (14.95)

OLS estimates β̂i are then interpreted as if they had the same properties. When i = b,
βb is a scalar so that Xb is a vector xb, and the marginal distribution of β̂b is given in
(14.76). Then the partial correlation rby·a between y and xb having removed the linear
influence of Xa (assumed to contain ι) is the correlation between May and Maxb:

rby·a =
y′Maxb√

(y′May) (x′
bMaxb)

=
β̂b
√

(x′
bMaxb)√

(y′May)
. (14.96)

Note that May and Maxb have zero means and that:

r2by·a =
β̂b (x

′
bMaxb) β̂b
y′May

. (14.97)

The numerator of (1− r2by·a) is y′May − β̂b (x′
bMaxb) β̂b = y′M∗y where:

M∗ = Ma −Maxb (x
′
bMaxb)

−1
x′
bMa

= Ma

[
IT −Maxb (x

′
bMaxb)

−1
x′
bMa

]
Ma

(14.98)

so M∗ = M. This last equality follows from applying (14.86) since [·] annihilates
Maxb. As a check, by suitable rearrangement of the order of regressors, M∗X =

M∗ (Xa : xb) = 0 = MX. From the earlier formula for τi when i = b:

τ2b =
(T − k) r2by·a(
1− r2by·a

) , (14.99)

In the special case that k = 2 and xa = ι, (14.94) coincides with (14.99).
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When Xa includes ι and kb > 1, (14.98) holds in the form:

M = Ma −MaXb (X
′
bMaXb)

−1
X′

bMa,

so that:

y′My = y′May − y′MaXb (X
′
bMaXb)

−1
X′

bMay = y′May − β̂
′

bX
′
bMaXbβ̂b.

(14.100)
Substituting (14.100) in (14.77):

ηb =
(T − k) (y′May − y′My)

kbû′û
=

(T − k) (ũ′ũ− û′û)

kbû′û
=

(T − k)
kb

(
d
σ̃2
u

σ̂2
u

− 1

)
(14.101)

where d = (T − ka) / (T − k). Thus, when σ̂2
u = σ̃2

u, ηb = 1 and when σ̂2
u > σ̃2

u,
ηb < 1. Deleting kb regressors when the F-test for the significance of their coefficients
is less than unity will lower the estimated residual standard error. For kb = 1, deleting
a single variable with τ2b < 1 will lower the estimated residual standard error.

14.7.8 Maximum likelihood estimation

As noted, OLS is also the MLE here. When u ∼ NT [0, σ2
uI], the conditional log-

likelihood function is:

ℓ
(
β,σ2

u | X;y
)
= −T

2
log (2π)− T

2
log
(
σ2
u

)
− (y −Xβ)

′
(y −Xβ)

2σ2
u

(14.102)

so the MLE minimizes the last term, which yields OLS. From above:

ℓ
(
β,σ2

u | X;y
)
= −T

2
log (2π)− T

2
log
(
σ2
u

)
−

(
β̂ − β

)′
X′X

(
β̂ − β

)
2σ2

u

− û′û

2σ2
u

(14.103)
From (14.103), (β̂, σ̂2

u) are jointly sufficient for
(
β,σ2

u

)
, and by independence, the joint

distribution of β̂ and σ̂2
u factorizes into the products of their marginals.

14.7.9 Recursive estimation

To understand the basis of recursive estimation, denote the specified equation by:

yt = β
′xt + ut (14.104)

where β is asserted to be constant, E [xtut] = 0∀t, E
(
u2t
)
= σ2

u, and E (utus) = 0

if t ̸= s. Let the complete sample period be (1, . . . , T ), and consider the least-squares
outcome on a subsample up to t− 1 (for t > k when there are k regressors in xt−1):

β̂t−1 =
(
X′

t−1Xt−1

)−1
X′

t−1yt−1, (14.105)
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with Xt−1 = (x1 . . .xt−1)
′ and yt−1 = (y1 . . . yt−1)

′. When the sample is increased
by one observation, then:

X′
tXt = X′

t−1Xt−1 + xtx
′
t (14.106)

and:
X′

tyt = X′
t−1yt−1 + xtyt. (14.107)

However, given
(
X′

t−1Xt−1

)−1
, one does not need to invert (X′

tXt) to calculate β̂t.
Rather:

(X′
tXt)

−1
=
(
X′

t−1Xt−1

)−1 − λtλ
′
t

1 + λ′
txt

, (14.108)

where
λt =

(
X′

t−1Xt−1

)−1
xt. (14.109)

Thus, the inverse can be sequentially updated, and β̂t follows directly. A similar up-
dating formula is available for updating the residual sum of squares (RSS) from the
innovations given by:

RSSt = RSSt−1 +
ν2t

1 + λ′
txt

(14.110)

where the innovations are the one-step ahead forecast errors:

νt = yt − x′
tβ̂t−1. (14.111)

These are mean zero, independent random variables, with variance

E
[
ν2t
]
= σ2

u (1 + λ′txt) = σ2
uωt.

The standardized innovations are:

νt

(1 + λ′txt)
1/2

.

From this, equation and parameter standard errors are readily calculated:

σ̂2
t =

RSSt

t− k
(14.112)

and:
V
[
β̂t

]
= σ̂2

t (X
′
tXt)

−1 (14.113)

where V [·] denotes variance.
Finally, from the sequence of {RSSt−1}, sequences of tests (for example, for pa-

rameter constancy) can be calculated, based on Chow (1960).
If instrumental variables estimators are used, the recursive formulae are similar but

more cumbersome (see Hendry and Neale, 1987).



Chapter 15

Advanced Econometrics

15.1 Introduction
This chapter offers an overall description of the class of dynamic models handled by
PcGive, the most frequently used concepts and modelling strategies, and the estima-
tion and evaluation procedures available. The class of single-equation dynamic linear
models analyzed by PcGive, including a model typology and distinctions between in-
terpretations of linear models, were described in Chapter 13. Here we discuss dynamic
systems in §15.2. The crucial concept of weak exogeneity is described in §15.3.2 as the
basis for valid inference in single-equation conditional models which are nevertheless
part of a dynamic economic system. That section also introduces several factorizations
of data density functions, and relates these to such concepts as white noise and innova-
tions. Following a brief overview of estimation techniques in §15.4 the discussion then
turns to model evaluation in §15.5, the types of test used in §15.6, and an information
taxonomy for model evaluation and design in §15.7. Finally, section 15.8 considers
modelling strategies with an emphasis on automatic model selection.

15.2 Dynamic systems
The class of models basic to PcGive is that of linear dynamic single equations. Chap-
ter 13 discussed the formulation and properties of such equations, their forms (in the
typology), and their different interpretations. In economics, however, equations cannot
be viewed in isolation: they are inherently part of a system. Here we note the structure
of such systems, and lay the ground for determining when a single-equation analysis is
likely to be valid despite the system context. Volume II (Doornik and Hendry, 2013b)
analyzes linear dynamic systems qua systems, but PcGive provides single-equation
methods that are applicable when one equation is the focus of interest from a system that
otherwise is rather loosely specified. Dynamic systems are more extensively described
in Volume II. For completeness, we give a brief overview here.

214
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As in Chapter 13, dynamic linear equation analysis follows from the use of lag
operators (denoted by L) such that Lrxt = xt−r for a variable xt. When yt and zt are
n×1 and k×1 vectors of variables of modelled and non-modelled variables respectively,
an expression like (13.4) constitutes a dynamic linear system. Since Lrxt = xt−r for
vectors as well, this enables us to describe the formulation of a dynamic system rather
compactly.

The data sets of observations on {yt} and {zt} are denoted by Y1
T = (y1 . . .yT )

and Z1
T respectively where:

yt =


y1,t
y2,t
...
yn,t

 and zt =


z1,t
z2,t
...
zk,t

 .

Formally, a dynamic system can be written as:

yt =

m∑
i=1

π1iyt−i +

r∑
j=0

π2jzt−j + vt (15.1)

where vt ∼ Nn [0,Ω] for t = 1, . . . , T . Section 15.3.2 describes when zt can be treated
as weakly exogenous for the parameters of interest in the system, so that it is legitimate
to treat {zt} as determined outside the system in (15.1). Note that xt in (13.4) may be
endogenous in the system context (15.1) even though it is not jointly determined with
yt in (13.4). Also, m and r in (15.1) may differ between yt and zt as well as between
variables within that partition.

Introducing matrix lag polynomials:

π1 (L) =

m∑
i=0

π1iL
i and π2 (L) =

r∑
j=0

π2jL
j ,

write (15.1) as:
π1 (L)yt = π2 (L) zt + vt,

where it is assumed that π10 = In (the n × n identity matrix), and that π1 (1) ̸= 0
and π2 (1) ̸= 0, so that y and z are cointegrated. In conventional parlance, (15.1)
is a reduced form, but since no structural model has been specified from which it can
have been reduced, we refer to (15.1) as the system (see Hendry, Neale, and Srba,
1988). When zt is deterministic, (15.1) is closed and is a vector autoregression (VAR).
However, at least conceptually, one could imagine extending the system to endogenize
zt and make a bigger VAR, so if π20 = 0, (15.1) is part of a VAR (cut across equations),
and if π20 ̸= 0 it is a VAR conditional on zt.

A model of the system is created by premultiplying (15.1) by a non-singular n× n
matrix B:

Byt =

m∑
i=1

Bπ1iyt−i +

r∑
j=0

Bπ2jzt−j +Bvt, (15.2)
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or switching notation:

B (L)yt = C (L) zt + ut with ut ∼ INn [0,Σ] . (15.3)

The system is said to be complete if B is non-singular. Let A be the matrix of all the
coefficients:

A = (B0 : B1 : · · · : Bm : −C0 : · · · : −Cr)

and xt the column vector of all the variables (yt . . .yt−m : zt . . . zt−r) then (15.3) can
be written neatly as:

Axt = ut ∼ INn [0,Σ] .

The matrix A must be restricted if the {Bi,Ci} are to be unique: otherwise, a
further non-singular multiplication of (15.2) would produce a different model, yet one
which looked exactly like (15.3), thereby destroying uniqueness. The rank and order
conditions for identification apply: both are fully discussed in Volume II. The main
issue of relevance to PcGive is that in any equation containing p right-hand side en-
dogenous variables, the system of which it is part must contain at least p non-modelled
variables not included in that equation: this is the order condition. When the sample of
T observations on these p endogenous variables is just denoted by Y and the sample
on the excluded but available non-modelled variables is Z, then:

rank (Y′Z) = p,

is both necessary and sufficient for identification: this is the rank condition (see White,
1984).

All of the model types of §13.4 could occur within (15.3), and if A is over-
identified, the imposed restrictions are testable. When developing a model of a system,
it is sensible to commence from the unrestricted representation (15.1), test its validity,
and then reduce the system to the model. All of the attributes needed for the model
to match the evidence are called congruency (see §15.7) and these can be tested, but
care is required in modelling integrated data. As a first step, cointegration tests can be
conducted to establish the dimension of the cointegrating space, and the relevant set
of cointegration restrictions and differences can be imposed to reduce the data to I(0).
This order will facilitate later testing, since conventional limiting distributions can be
used: see Phillips (1991) and Hendry and Mizon (1993) for discussions of modelling
cointegrated processes, Johansen (1988) and Johansen and Juselius (1990) for analy-
ses of the maximum likelihood estimator, and Hendry, Neale, and Srba (1988) for an
approach to structural system modelling in I(0) processes. Such a methodology imple-
ments the general-to-specific notion in the system context, and contrasts with the alter-
native of specifying a structural model at the outset and testing its restrictions against
the (derived) reduced form. Since the latter may be invalid, it provides an unreliable
benchmark for any tests. Techniques for estimating models, as well as general deriva-
tions of standard errors etc., are considered in §15.4 below; further detail on systems
and models thereof is provided in Volume II, which includes the implementation of a
complete modelling exercise on a dynamic cointegrated system.
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Prior to proceeding, we note that since (15.1) is a model of itself, and there are
likely to be valid parsimonious representations of the system (15.1), the critique in Sims
(1980) lacks force. Specifying a model in structural form corresponds to imposing non-
linear restrictions across functions of the πs in (15.1), and there are no a priori grounds
for claiming that all possible restrictions are invalid. For example, if the response of
y1,t to y2,t is very rapid compared to that of y2,t to y1,t in a second equation, a struc-
tural model of their joint representation can impose valid restrictions on the VAR. The
application of encompassing discussed in §15.7 will clarify this issue further. At the
heart of the issue of conditional estimation is the role of weak exogeneity in modelling
single equations, so we now discuss that issue (see Engle, Hendry, and Richard, 1983).

15.3 Data density factorizations
To undertake valid inference using a single-equation approach, some conditions must
be fulfilled such that the system dependence of conditioning variables can be neglected
without losing relevant information. These conditions are encapsulated in the concept
of weak exogeneity. First, we introduce joint data density functions, and extend the
notion of factorization introduced in Chapter 14.

15.3.1 Innovations and white noise

The data set of observations on {yt} and {zt} in (15.1) is denoted by X1
T = (x1 . . .xT )

where x′
t = (y′

t : z
′
t). Thus:

X1
T =

(
y1 y2 · · · yT

z1 z2 · · · zT

)
.

Denote the process generating X1
T by DX

(
X1

T |θ1T ,X0

)
where X0 are the initial con-

ditions and θ1T ∈ Θ are the ‘parameters’ of the process, which may depend on the
historical time (hence the indexing by 1, . . . , T ). Since X1

T = (x1 . . .xT ), the whole
sample data density DX (·) can be sequentially factorized as the product of terms like
Dx

(
xt|X1

t−1,θt,X0

)
which is each time period’s density. This exploits the fact that if

P (a) denotes the probability of an event a, then P (ab) = P (a|b)P (b), and this can
be repeated starting at t, then t − 1, . . . , 1. Assume θt = θ ∀t (constancy is the topic
of §15.7.3), and let Xt−1 =

(
X1

t−1,X0

)
so that DX (·) at every t is Dx (xt|θ,Xt−1).

Then:

DX

(
X1

T | θ,X0

)
=

T∏
t=1

Dx (xt | θ,Xt−1) . (15.4)

Let:
νt = xt − E [xt | Xt−1] ,

then by construction, {νt} is a mean innovation process since:

E [νt | Xt−1] = E [(xt − E [xt | Xt−1]) | Xt−1] = 0. (15.5)
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Moreover, since lagged νs, denoted by Vt−1, can be derived from Xt−1 (by lagging
their definition), they are also white noise:

E [νt | Vt−1] = 0. (15.6)

Thus, the DGP can be expressed without loss in an innovation-error representation.
A well-known example is provided by the stationary first-order autoregressive pro-

cess:
yt = µyt−1 + et,

when {et} is jointly normal and E [etes] = 0 ∀t ̸= s. Then, DY

(
y1 . . . yT |µ, σ2

e , y0
)

is the multivariate normal density NT

[
0, σ2

eΩ
]

where Ω is a T × T symmetric matrix
with (i, j)

th element:
µ|i−j|

(1− µ2)
.

The factorization of the joint density of (y1 . . . yT ) is:

DY

(
y1 . . . yT | µ, σ2

e , y0
)
=

T∏
t=1

Dy

(
yt | Yt−1;µ, σ

2
e

)
which yields a product of individual density terms like N

[
µyt−1, σ

2
e

]
. Since νt =

yt − E (yt|Yt−1), then:

νt = yt − E [yt | yt−1] = yt − µyt−1 = et

is indeed the (mean) innovation (see e.g., Judge, Griffiths, Hill, Lütkepohl, and Lee,
1985, Chapter 8).

15.3.2 Weak exogeneity

We can now formalize weak exogeneity. Its importance is that all current-dated re-
gressors treated as conditioning variables must be weakly exogenous to sustain valid
and efficient inferences (see Engle, Hendry, and Richard, 1983). To relate the analysis
more closely to that in Chapter 13, we only consider a bivariate system, where the two
variables are (yt : zt): the analysis generalizes by interpreting these as vectors.

First, note that the joint density Dx (xt|θ,Xt−1) is unaffected by 1-1 transforma-
tions of its parameters θ to ϕ (say) where:

ϕ = f (θ) and ϕ ∈ Φ,

so that:
Dx (xt | θ,Xt−1) = Dx (xt | ϕ,Xt−1) .

Secondly, we can partition into ϕ = (ϕ1 : ϕ2) to match the partition of xt into
(yt : zt). Then, using the factorization in (15.4), if yt is to be conditioned on zt, we can
factorize Dx (·) into a conditional and a marginal distribution:

Dx (xt | θ,Xt−1) = Dy|z (yt | zt,Xt−1,ϕ1)Dz (zt | Xt−1,ϕ2) . (15.7)
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This does not impose any restrictions, and hence loses no information.
Thirdly, some parameters, denoted µ, will be the focus of the econometric mod-

elling exercise, and these are called parameters of interest. To avoid information loss
from only modelling the conditional relation in (15.7), it must be possible to learn about
µ from the factor:

Dy|z (yt | zt,Xt−1,ϕ1) (15.8)

alone. Moreover, the resulting knowledge about µ must be equivalent to that which
could have been gleaned from analyzing the joint density Dx (·). Two conditions ensure
that equivalence. First:
1. all the parameters of interest µ can be obtained from ϕ1 alone; and
2. ϕ1 and ϕ2 must be variation free (that is, impose no restrictions on each other):

(ϕ1 : ϕ2) ∈ Φ1 ×Φ2 where ϕ1 ∈ Φ1 and ϕ2 ∈ Φ2.

If so, zt is said to be weakly exogenous for µ, and only the conditional model
Dy|z (yt|zt,Xt−1,ϕ1) needs to be estimated to determine µ, since the marginal model
Dz (zt|Xt−1,ϕ2) contains no information about µ. For more extensive and expository
discussions, see Ericsson (1992) and Hendry (1995a).

15.4 Model estimation

Like many of the other aspects considered here, appropriate estimation is a necessary,
rather than a sufficient, condition for developing useful models. Given a particular
model form and a distributional assumption about the data, the log-likelihood function
can be formulated, and is denoted ℓ (θ) where θ is the vector of unknown parameters
of interest. Maximum likelihood (MLE) and least squares estimators are described in
Chapter 14. In some cases, the set of first-order conditions defining the MLE may
be non-linear and require iterative solution methods: this holds for any non-linear re-
gression model. In large samples, for correctly specified problems, MLEs have many
excellent statistical properties. Moreover, for models linear in both variables and pa-
rameters, almost all other estimation methods can be obtained as approximate solutions
of the score equation based on choosing different initial values and selecting different
numbers of iterative steps in alternative numerical methods. For example, simultaneous
equations estimation is encapsulated in a simple formula called the estimator generating
equation (EGE: see Hendry, 1976, and Hendry, Neale, and Srba, 1988). Here we note
that OLS and IVE are special cases of the EGE when an individual equation is being
studied (even if that equation is implicitly part of a system).

The standard errors of θ̂ are usually calculated from the inverse of the informa-
tion matrix or the negative inverse of the Hessian, although such a formula assumes a
correctly-specified error (that is, a homoscedastic innovation). In PcGive, autocorrela-
tion and heteroscedastic-consistent standard errors can be computed for OLS, but any
differences from the conventional SEs reveals non-congruence.
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The distributional assumptions for θ̂ implicit in inferences within PcGive (other
than unit-root tests) are that, conditional, on having a congruent representation:

√
TR

(
θ̂ − θp

)
D→ Nn [0, I] ,

where T is the sample size, the probability limit of θ̂ is θp (the invariant parameter
of interest), and V = plimH−1 such that V−1 = R′R. This assumes that variables
are transformed to I(0) and that all the components of congruency are valid. Naturally,
these assumptions should be rigorously evaluated in order to sustain such a conditioning
claim since ‘the three golden rules of econometrics are test, test and test’ (see Hendry,
1980). If a function of θ is of interest, say g (θ) = ϕ (r × 1) the standard errors of
ϕ̂ = g(θ̂) are derived from the Taylor-series approximation:

ϕ̂− ϕ = J
(
θ̂ − θ

)
(15.9)

where

J =
∂g (θ)

∂θ

′
,

is the Jacobian matrix of the transformation, and hence:
√
T
(
ϕ̂− ϕ

)
D→ Nr [0,JVJ′] (15.10)

J can usually be derived analytically for cases of interest, but otherwise is calculated
by numerical differentiation.

The preceding analysis of estimation (and implicitly also of testing) sidesteps an
important issue which textbook notation also tends to camouflage, namely that estima-
tion methods and associated tests are applied to the whole sample directly rather than
recursively (adding observations one at a time). As stressed above, PcGive incorpo-
rates the recursive estimator RLS; multiple equation dynamic modelling contains the
generalization to a system of equations with common regressors, and even recursive
FIML. Such recursive estimators can yield evaluation information in a powerful way,
yet for least squares are not computationally burdensome relative to direct methods (see
Hendry and Neale, 1987).

15.5 Model evaluation
In Chapter 13, the basic single-equation dynamic model was written as:

b0 (L) yt =

k∑
i=1

bi (L) zi,t + ϵt (15.11)

where there are k explanatory variables (z1,t . . . zk,t), bi(L) denotes a lag polynomial,
and we have changed notation for the non-modelled variables from x to z to match the
system notation above.
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It is relatively easy to specify and analyze models such as those in (15.11), or any
generalizations thereof, when they are regarded as mathematical formulations. Unfor-
tunately, it is far more difficult to develop useful empirical relationships corresponding
to these for a given time series on a set of variables. In particular, the orders of the lag
lengths of every polynomial b0 (L), b1 (L) etc. must be established, as must the rele-
vance of any given variable, the constancy of the entities called parameters, the validity
of conditioning, the required functional form, and the properties of the unmodelled
term. Indeed, this description begs the very issue of what defines the usefulness of an
econometric relationship.

At a general level, the utility of anything depends on the purposes for which it is
being developed. Hence if a completely specified loss function existed for judging a
particular modelling exercise, it would seem natural to develop a model to optimize
that criterion. Two problems arise, however, neither of which can be sidestepped. First,
it is rare in econometrics to be able to fully specify the loss function. Models are wanted
for prediction, for scenario or policy analyses, for testing economic hypotheses, and for
understanding how the economy functions. Empirically, there often exist conflicts in
criteria in selecting models to achieve such multiple objectives. For example, a model
which predicts well historically may yield no insight into how a market will behave
under some change in regulations, the implementation of which will cause that model
to mispredict. Secondly, even assuming that a fully-specified loss function did exist and
that the optimal model could be selected, there remains the difficulty of establishing
how ‘good’ that best model is. For example, the best model that could be found may
still suffer from non-constant parameters and hence yield a low level of utility; worse
still, by not knowing this weakness, serious losses may accrue in the future. Thus,
whatever the basis on which a model has been formulated or developed, there remains
an issue of assessment or evaluation.

PcGive operates easily and efficiently to implement this aspect. Since we do not
know how the economy works, we do not know the best way of studying it. Conse-
quently, any model might correspond to reality, however unlikely its mode of creation;
or unfortunately, it might transpire to be invalid, however clever and thorough its devel-
opment. Nevertheless, taking a model as stated by its proprietor, a vast range of states
of the world will be excluded by that model, and thus it is open to evaluation against the
available information (see Hendry, 1987, for a more extensive analysis). For example,
because its residual process is white noise, a particular model may claim to explain a
given data set adequately; yet the residuals may not be an innovation process, so testing
that latter hypothesis might reveal an important model weakness (as in the COMFAC
procedure discussed in §13.4). This is the destructive testing aspect of PcGive, and
accounts for its wide range of pre-programmed statistics for model evaluation.

Testing focuses on the empirical validity of assertions about a given model. Tests
are statistics with a known distribution under a null hypothesis and some power against
a specific alternative. The tests below are designed to have (central) t, F or χ2 distri-
butions under the null, and corresponding non-central distributions against some alter-
native. Usually, they are invariant to the direction of the departure from the null for
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a given class of alternatives, and only depend on the distance (that is, the overall ex-
tent of the departure: this holds for t2, F and χ2 statistics). However, most tests also
have some power to detect other alternatives, so rejecting the null does not entail ac-
cepting the alternative, and in many instances, accepting the alternative would be a non
sequitur. Rejection reveals model invalidity, albeit with some chance of a type-I error
of incorrectly rejecting a valid null.

First, however, we need to delineate the relevant class of null hypotheses, and then
derive associated test statistics for reasonable alternatives. The former task is consid-
ered in §15.7 in terms of a taxonomy of available information, and the latter in §15.6
where the main test principles are briefly described.

15.6 Test types

Various test principles are commonly used in econometrics and the three main ones
are Wald (W), Lagrange-multiplier (LM) and Likelihood-ratio (LR) tests (see Breusch
and Pagan, 1980, and Engle, 1984). For example, the Chow (1960) test for parame-
ter constancy is derivable from all three principles, whereas the test of over-identifying
restrictions is LR, the portmanteau tests for autocorrelation in OLS are based on LM,
and the COMFAC tests are Wald tests. In each instance, the choice of test type tends
to reflect computational ease. Under the relevant null hypothesis and for local alter-
natives, the three test types are asymptotically equivalent; however, if equations are
mis-specified in other ways than that under test, or the sample size is small, different
inferences can result.

Although LM tests conventionally come in the form TR2 (being distributed as χ2),
research indicates that F-forms have more appropriate significance levels and that χ2

versions reject acceptable models too often (see Kiviet, 1987). (Incidentally, Kiviet’s
results also show that the Chow test and LM tests for autocorrelated residuals are ap-
proximately independently distributed.) Thus, PcGive tends to report F-forms when
possible. Pagan (1984) exposits testing in terms of residual diagnostic procedures. Fur-
ther details on econometric testing can be found in Harvey (1981), Harvey (1990),
Spanos (1986), Godfrey (1988), Hendry (1995a) or in relevant chapters of Griliches
and Intriligator (1984).

While a basic feature of PcGive is that most of the test statistics are calculated by a
simple choice from a menu, others are inbuilt. For example, parameter constancy tests
based on Hansen (1992) can be automatically undertaken with OLS estimation; alter-
natively, if the user initially specifies some post-sample observations, forecast-based
tests are computed. Similar considerations apply to tests for the validity of any given
choice of instrumental variables (automatic), and to the significance of lagged variables
(computed by selecting Dynamic analysis). Note that the options in the Options dialog

can be set to ensure automatic computation of the test summary, inter alia.
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15.7 An information taxonomy

A further division of the data set X1
t = (x1 . . .xt) into:

X1
T =

(
X1

t−1 : xt : X
t+1
T

)
yields the trichotomy of the (past : present : future) relative to t. In addition, we allow
for theory information, measurement information, and the information in rival models
(see Hendry and Richard; Hendry and Richard, 1982, 1983, and Gilbert, 1986, for ex-
positions). Statistical tests can be constructed to evaluate a model against each element
of this six-fold taxonomy. Such tests require formulating both the appropriate null hy-
pothesis for the relevant information set, and devising a reasonable class of alternatives
against which the test should have power. The taxonomy clarifies the relevant null hy-
potheses, and generally points up interesting alternatives against which to test model
validity.

The six major aspects of model evaluation are discussed next, followed by a brief
analysis of their relation to the theory of reduction.

15.7.1 The relative past

The residuals should be white noise and hence unpredictable from their own past as
in (15.6). This entails that they should not be significantly autocorrelated. If they are
autocorrelated, a better-fitting model can be developed by removing the autocorrela-
tion, although this is not a recommended practice, since it may impose invalid common
factors. PcGive provides valid tests and diagnostic information for residual autocorre-
lation, including Lagrange-multiplier tests for a wide range of orders of autoregressive
errors, as well as residual correlograms and autoregressions.

Further, the errors should not be explainable from the information set being used.
Alternatively expressed, the errors should be an innovation process which is unpre-
dictable from lagged functions of the available data as in (15.5). Being white noise is
a necessary, but not sufficient, condition for being an innovation, as shown above. A
good example arises when removing autocorrelation by fitting, say, autoregressive er-
ror processes, since that automatically ensures the white noise, but may impose invalid
common-factor restrictions and hence does not entail an innovation error (see Sargan;
Sargan, 1964, 1980a). This problem can be avoided by beginning with a general spec-
ification like (15.11) and testing for valid common factors prior to imposing them. In
PcGive, the COMFAC tests to check such restrictions are based on Sargan’s algorithms.

Neither white-noise errors nor innovations need be homoscedastic, so that the stan-
dard errors of OLS estimators in PcGive can allow for residual heteroscedasticity (the
HCSEs in Chapter 13: see White, 1980, and MacKinnon and White, 1985). Tests of
both autoregressive conditional heteroscedasticity (ARCH: see Engle, 1982) and uncon-
ditional heteroscedasticity are also provided. Similarly, tests for normality are included
to check on the distributional assumptions underlying finite-sample inference.
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To summarize these aspects relating to the (relative) past of the process, namely
X1

t−1, a reasonable null is that the unexplained component of a behavioural model
should be a homoscedastic innovation.

15.7.2 The relative present

As noted above, all current-dated conditioning variables should be at least weakly ex-
ogenous (see Engle, Hendry, and Richard, 1983) to sustain valid and efficient infer-
ences. While weak exogeneity is not easy to test directly, tests of estimation consistency
based on Engle (1984) can be calculated from stored regression predictions, using the
fact that lagged variables are predetermined once the errors are innovations. These
statistics test for the overall model specification and need not detect all forms of weak
exogeneity failure: see Hendry (1995b). However, valid conditioning in conjunction
with other hypotheses may entail many testable hypotheses: for example, parameter
constancy in a structural equation, despite non-constancy in a reduced form or marginal
processes, strongly supports weak exogeneity (see Favero and Hendry, 1992). Con-
versely, parameters of current endogenous variables (other than the dependent variable)
should be estimated using instrumental variables (IV), or full-information maximum
likelihood (FIML). Any instruments chosen must themselves be weakly exogenous for
the parameters of interest (see §13.8 for the algebra of IV estimation).

Thus, for the (relative) present, namely xt above, the crucial null hypothesis is that
the conditioning variables (regressors or instruments) are valid.

15.7.3 The relative future

The parameters should be constant over time, where such ‘parameters’ are those entities
which are anticipated on a priori grounds to be the basic invariants of the model. Here,
an invariant is a parameter which remains constant over a range of interventions or
regime shifts in policy (or marginal) variables. If zt in (15.8) is weakly exogenous
for the parameters of interest µ, and ϕ1 is invariant to changes in the distribution of
{zt}, then zt is super exogenous for µ. In this formulation, constancy is necessary for
invariance.

PcGive calculates tests for parameter constancy based on Hansen (1992), and ex
post 1-step forecast confidence bands, as well as offering recursive least squares (RLS)
(see Hendry and Neale, 1987). Various types of constancy tests based on Chow (1960)
are available.

Much of the power of PcGive resides in its recursive procedures. These are a useful
tool for investigating issues of invariance and super exogeneity by showing that the be-
haviour of the zt process did actually alter without changing the parameters of interest.
This is one way of testing assertions that parameters are liable to suffer from the Lucas
critique (see Hendry, 1988, and Favero and Hendry, 1992). The algebra of recursive
estimation is described in Chapter 14. For recursive estimators, a large volume of out-
put is generated, which can be analyzed graphically by plotting the recursive errors or
coefficients etc. against t. The systems estimator is similar in structure, except that yt
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becomes a vector of endogenous variables at time t.
Thus, in this group of tests about the (relative) future, denoted above by Xt+1

T , the
crucial null is parameter constancy.

15.7.4 Theory information

Econometrics is essentially concerned with the mutual interplay of economic theory
and empirical evidence. Neither has precedence, and both are essential. It is difficult to
characterize this information source in the abstract, partly because it is so pervasive, and
partly because it is itself often under scrutiny. The role that theory information plays
depends on the precise context, as is easily seen by contrasting exercises modelling the
demand for cheese with modelling either the supply of money or the determination of
an international exchange rate. Through national income accounts concepts, economics
affects the measurement of the data variables, and theory models influence the choice
of the data to examine, and the classes of models and functional forms to use, as well
as suggesting the parametrizations of interest. Conversely, a major objective of a study
in economics may be to test the validity of some theoretical propositions.

Not all theories are equal, and indeed theories differ greatly in their level, some be-
ing very low-level and well established (for example, those concerned with measuring
the output of apples or the volume of visible imports); some being medium level and
widely used but potentially open to revision as knowledge improves (for example, price
indices, or concepts of the capital stock), and yet others being high level and under test
(for example, a rational expectations, inter-temporal substitution theory of labour sup-
ply; or a surplus-rent theory of house price determination). Thus, that all observations
are theory laden does not entail that data-based studies are impossible or even mis-
guided; rather, the respective roles of evidence and theory will vary with the reliability
of each in the given context (for a more extensive discussion, see Hendry, 1995a).

To test any theory requires a baseline, so first one must determine the extent to which
that baseline satisfies the evaluation criteria. Thus, we are led to distinguish between
the statistical model and the econometric model, where the former is the baseline and
is judged on statistical criteria, and the latter is interpreted in the light of the economic
theory, but tested against the former (see, for example, Spanos, 1986). This distinction
is at its clearest for the system and the model thereof in the system module, where a
test of over-identifying restrictions is automatically calculated to check the coherence
between the two.

Overall, one can do little better than state the need for an econometric model to be
at least low-level theory consistent.

15.7.5 Measurement information

This too is not open to a general discussion, but relates to the issues of data accuracy
and admissibility. The latter concerns whether or not a given model could logically
have generated the observed and future potential data. For example, the unemployment
rate must lie between zero and unity; a logit transformation ensures that, but a linear
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model could generate negative unemployment (see White, 1990, for a critique). The
relevance of such considerations depends on the problem under study, but since (for
example) cointegration between the logarithms of any given set of I(1) variables need
not entail cointegration between the levels, choosing the appropriate functional form
can be vitally important.

The other key aspect is data measurement accuracy, and like apple pie, almost ev-
eryone favours more accurate data. Again we can only reiterate the obvious point that
effort must be devoted to preparing the best available data, and to taking account of any
known inaccuracies as well as the average level of their imprecision. Modelling the mis-
measurement is sometimes possible (see Hendry, 1995a), and the use of instrumental
variables rather than OLS is an example of doing so.

15.7.6 Rival models

The final necessary condition to ensure that an empirical model is in the set of useful
contenders is that it is not dominated by any other model. More stringently, one might
desire that no other model (M2, say) explained features of the data which one’s own
model (M1) could not. This idea was formalized in Chapter 13 by encompassing, and
testing whether other models captured specific information not embodied in the model
under test (see Hendry and Richard; Hendry and Richard, 1982, 1989, Mizon, 1984,
and Mizon and Richard, 1986). The contending model must encompass (denoted by E)
previous empirical models of the dependent variable (in symbols M1 EM2).

Parsimonious encompassing (which is reflexive, antisymmetric and transitive) re-
quires a congruent model to explain the results of a larger model within which it is
nested. Let ⊂ denote nesting and Ep parsimonious encompassing: if M1 ⊂ M2 then
M1 Ep M2 is that requirement. Consider a sequence of congruent models:

M1 ⊂ M2 ⊂ M3.

When M1 Ep M2 and M2 Ep M3, then M1 Ep M3. This follows because when M1 Ep M2

and M2 EM1 (by virtue of nesting it), then M1 represents a limit to which M2 can
be validly reduced (although further reduction may be feasible as is entailed by the
sequence M3 → M2 → M1). Since M2 is a valid reduction of M3 by hypothesis,
then M1 must also be a valid reduction of M3. Indeed, despite encompassing initially
arising as a distinct concept in a different research area, it is an intimate component of
the theory of reduction discussed in §15.7.7, and a further major reason for adopting a
general-to-specific approach (see Bontemps and Mizon, 2003).

Let Mm be the minimal nesting model of two non-nested models M1 and M2 (so that
neither M1 nor M2 is a special case of the other). Mm may be hard to synthesize, and
may not be unique without arbitrary restrictions, but this difficulty reflects the inherent
problems of any specific-to-general approach, and is not a difficulty for encompassing
per se: the relevant issue of interest here is when M1 does or does not encompass
M2, not the route by which the problem arose. If M1 Ep Mm, then M2 can contain no
specific information not already embodied in M1 (since otherwise Mm would reflect
that information, and M1 could not be a valid reduction). Conversely, if M1 EM2 then
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M1 Ep Mm. Thus, it should not matter whether M1 is tested against M2, M1∪M2 = Mm

or any combination thereof (including the orthogonal complement of Mm relative to
M1). Tests which are invariant to such common variables consequently seem essential,
and the F-test for model simplification has that property for linear models. Chapter 13
provided an empirical illustration.

In the multi-equation context, the econometric model should encompass the sta-
tistical system (usually a VAR or unrestricted reduced form), and this is the test for
over-identifying restrictions noted above (see Hendry and Mizon, 1993).

Consequently, the crucial null hypothesis in this information set is that the econo-
metric model should parsimoniously encompass the statistical system.

15.7.7 The theory of reduction

The key concept underpinning the above analysis is that models are reductions of the
DGP, obtained by transforming the initial variables to those which are to be investi-
gated; marginalizing with respect to the many variables deemed irrelevant (but perhaps
incorrectly treated as such); sequentially factorizing as in §15.7.1; and conditioning
on other variables deemed to be weakly exogenous (as in §15.7.2): see Hendry and
Richard (1982) and Hendry (1987). Every reduction induces a transformation of the
original parameters λ of the DGP; consequently, invalid reductions may lead to the co-
efficients of the resulting model not being constant or invariant – or even interpretable
(as in so-called wrong signs). Thus, implicitly the analysis really begins with a far
bigger set of variables W1

T (say) than the set X1
T considered by the current group of

investigators, so, for example, W includes all the disaggregated variables which were
eliminated when only aggregate time series were retained for analysis. The process of
elimination or reduction then transforms λ into the θ1T used above, although nothing
guarantees that λ itself is constant.

The taxonomy of information sets §15.7.1–§15.7.6 arises naturally when consider-
ing each possible reduction step, so that reduction theory is invaluable in the context
of model evaluation for delineating null hypotheses, and in the context of discovery for
specifying the relevant design criteria. It also offers insights into many of the central
concepts of econometrics in terms of whether a reduction does or does not involve a loss
of information. Thus, we can consider the reverse of the taxonomy by relating extant
concepts to associated reduction steps:
1. the theory of sufficient statistics concerns when reduction by marginalizing with

respect to a subset of observations retains all of the information relevant to the
parameters of interest, as in aggregation;

2. the concept of Granger non-causality concerns when there is no loss of information
from marginalizing with respect to the entire history of a subset of variables (for
example, the elements of Wt−1 which are not included in Xt−1): this concept is
germane to marginalizing and not to conditioning (contrast Sims, 1980, with Engle,
Hendry, and Richard, 1983);

3. the concept of an innovation concerns when there is no information remaining in
lagged data: as shown above, all models can be expressed with innovation errors
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via sequential factorization; thus, all forms of autocorrelated-error representation
are at best ‘convenient simplifications’;

4. the concept of weak exogeneity concerns when there is no loss from ignoring infor-
mation in the marginal distributions of the conditioning variables;

5. the concept of invariance (or autonomy) concerns when the reduction sequence has
successfully isolated constant parameters of the DGP;

6. the concept of encompassing concerns when alternative models contain no addi-
tional information about the variables being modelled, so that an encompassing
model represents a limit (though not necessarily the final limit) to the set of feasible
reductions.
The theory of reduction also clarifies and extends the theory of encompassing by

revealing that all models are comparable via the DGP. Indeed, the concept of reduction
points up that model design is endemic, but because all models must arise as reductions
of the DGP, the pertinent issue is their validity, not how they were designed. Some
designs are inadvertent (as when residual autocorrelation is removed), whereas others
are deliberate (as in general-to-specific). Thus, reduction theory even explains why the
‘problems approach’ to econometric modelling arises: overly reduced empirical repre-
sentations of the DGP will usually manifest all sorts of symptoms of mis-specification.
However, badly-designed models will often result from sequentially correcting such
symptoms by adopting the alternative hypothesis corresponding to every null hypothe-
sis that is rejected (see Hendry, 1979).

Models that are satisfactory against all six of the above information sets are called
congruent and undominated (given the available information). Succinctly, PcGive is
designed for efficiently developing congruent encompassing models and for evaluating
existing models for potential departures from congruency.

15.8 Automatic model selection

15.8.1 Introduction

The economic data generation process (DGP), which is the joint density of all the vari-
ables in the given economy, is very complex, of high dimensionality, and evolving over
time. This complexity of economic processes necessitates selection. Furthermore, any
test followed by a decision is a selection, so selection is ubiquitous. Unfortunately,
model selection theory is difficult: all statistics have interdependent distributions, al-
tered by every modelling decision.

Computer implementation of model selection algorithms provides three services.
First, it forces precise specification of all aspects of the procedure. Next, by formalizing
the procedure it provides an environment that allows operational studies of alternative
strategies. Finally, a successful algorithm quickly becomes an indispensable tool for
empirical modelling. Indeed, although we postponed discussion to the advanced chap-
ter, one could equally treat the automated procedure as a Black box, and discuss it at
the introductory or intermediate level.
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Below we will explain the approach known as automated Gets (General-to-specific
modelling) and introduce Autometrics, which is the computer implementation used in
PcGive.

15.8.2 Modelling strategies

Turning now to constructive aspects of empirical research, since the DGP is unknown,
any method of discovery might produce a Nobel-prize winning model, as illustrated by
the apocryphal tale of Archimedes’ ‘Eureka’ or Poincaré’s memoirs (Poincaré, 1905).
Nevertheless, different research strategies are likely to have different efficiencies. If
one needs to estimate ‘literally hundreds of regressions’ (as in Friedman and Schwartz,
1982) to develop a single linear relationship between four or five variables, that strategy
would seem to have a low level of efficiency relative to an approach which could locate
at least as good a model in a couple of steps.

An important aspect of PcGive is that it facilitates general-to-specific model sim-
plification approaches (see, for example, Mizon, 1977, and Hendry and Mizon, 1978).
Unsurprisingly, these mimic the theory of reduction in §15.7.7. Thus, PcGive provides
easy ways of formulating polynomials like bi (L); solves for b0(1), b1(1) etc. (where
the lag length n might be 8 for quarterly data), and provides associated standard er-
rors; as well as tests for whether (zt−m . . . zt−n) as a group contribute to the model’s
explanatory power. For single equations, common factor (COMFAC) simplifications
can be checked, and long-run coefficients such as K1 in (13.9) are derived, together
with standard errors. All of the necessary conditions for model validity which were
discussed in §15.7 above can be checked.

Notably, PcGive provides facilities for automatic model selection when starting
from a congruent initial model.

Naturally, a premium rests on a sensible specification of the initial general unre-
stricted model, and that is where both economic theory and previous studies (to be
encompassed in due course) play a major guiding role. Economic theories are power-
ful at specifying long-run equilibria (such as (13.9) above) which delineate the menu
of variables, and earlier work often indicates at least minimal lag-length requirements.
Once formulated, the general model should be transformed to an interpretable (probably
orthogonal) parametrization and then simplified before rigorous testing. More detailed
discussions are provided in Hendry (1986b), Hendry (1987), Hendry (1995a).

15.8.3 Models and the local DGP

Because the data generation process is impossible to model, there is a need to reduce the
analysis to a manageable size: economists only ever analyze a small subset of possible
variables X1

T . The local DGP (LDGP) is the DGP in the space of those variables. The
theory of reduction explains the derivation of the LDGP, and delineates a taxonomy of
evaluation information.

Models reflect the local DGP — they are not facsimiles. We cannot do better in
modelling than locate the LDGP, unless we choose to respecify X1

T (and so move the
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goal posts). Empirical models of the LDGP are designed to satisfy various selection
criteria. Congruent models match the LDGP in all measured attributes so encompass it
(and conversely). ‘True’ models are in the class of congruent models. Congruence and
encompassing are operational: they imply testable necessary conditions for structure.
Successive congruent models must encompass earlier, thus generating a partial ordering
(reflexive, anti-symmetric and transitive), and allowing for progress to be made in the
modelling procedure.

General-to-specific modelling commences from a general statistical model (the
GUM or general unrestricted model). The GUM embeds previous empirical findings
and available theory. The GUM should capture essential characteristics of the data to
ensure congruence and valid inferences.

Insignificant variables are eliminated from the GUM to reduce complexity; diag-
nostic checks on the validity of these reductions ensures congruence of the final model.
The process that allows us to move from the unknown DGP to the specific model is
summarized in the following chart:1

Final terminal 
model 

Specification of 
general model 

Congruency i.e. 
GUM nests LDGP 

Theory of 
Reduction 

DGP 

LDGP 

The economic 
mechanism that 
operates in the 
real world 

DGP for 
locally 
relevant 
variables 

GUM 

SPECIFIC 

Automatic
Gets 

Algorithm 

Explicit model design mimics Theory 
of Reduction in practical setting 

Figure 15.1 From DGP to models

It should be clear that the specification of the GUM drives the automatic model
selection procedure: the specific model will not be able to improve on a bad GUM.
Therefore, the applied economist is not made redundant! Instead, Autometrics allows
her to concentrate on her area of expertise, while automating the modelling aspects that
can be quite tedious.

There is a trade-off to be made in terms of the size of the GUM. A larger GUM
increases the probablity to retain more adventitious effects, while a smaller GUM may
mean that key variables are omitted. Economic theory can play a central role in provid-
ing ‘prior simplification’.

1We are grateful to Jennifer L. Castle for preparing the diagram
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Prior analysis is essential, as it can help to decide which are relevant variables,
what functional form is required, and which economic events may need the addition
of indicator variables (such as dummies for oil shocks or VAT changes). Orthogonality
helps the model selection procedure — the less orthogonal, the harder it is to disentangle
the various effects (but ad hoc orthogonalization mixes all the effects up, which is also
undesirable, viz. impulse responses).

As Autometrics advances, it will gradually help users make more of these decisions,
such as: lag length, functional form, structural breaks, and even super exogeneity.

Finally, we note that, although Autometrics conducts inferences for I(0), most selec-
tion tests remain valid with integrated data, see Sims, Stock, and Watson (1990). Only
tests for a unit root need non-standard critical values. Most diagnostic tests also remain
valid, see Wooldridge (1999). Heteroscedasticity tests are an exception: powers of I(1)
variables behave oddly.

15.8.4 Costs of inference and costs of search

This section briefly considers the theoretical aspects of model selection, see Hendry and
Krolzig (2005), and our monograph Hendry and Doornik (2014) for more detail.

There are two costs of selection: the costs of inference and the costs of search. The
former is inevitable if tests of non-zero size and non-unit power are used. They even
apply when starting from the DGP (which we could do in a Monte Carlo experiment).
The costs of search are additional to the initial model being the DGP. The next two sub-
sections consider how expensive it is to search, noting that automatic model selection
is labour saving, and is essential if there are very many potential candidate variables.

15.8.4.1 Repeated testing

The first question to consider is: Does ‘repeated testing’ distort selection? As the
following three cases show, there is no generic answer:
1. Severe illness: more tests increase the probability of a correct diagnosis.
2. Mis-specification tests: if r independent tests τj are conducted under null for a small

significance level η (critical value cη):

P(|τj | < cη | j = 1, . . . , r) = (1− η)r ≃ 1− rη.

So more tests do increase the probability of false rejection here, corresponding to
the issue of ‘repeated testing’. This suggests using a significance level η of 1% or
tighter when using four or five tests.

3. Repeated diagnostic tests: the probabilities are unaltered.
Next, consider a perfectly orthogonal regression model:

yt = β
′zt + ϵt (15.12)

where E[ztz
′
t] = Λ is n × n diagonal. Order the n t2-statistics testing H0 : βj = 0:

t2(n) ≥ t2(n+1) ≥ · · · ≥ t2(1). The cut-off k between included and excluded variables
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is t2(k) ≥ cα ≥ t2(k+1). All larger values are retained and all others eliminated, so
only one decision is needed. ‘Repeated testing’ does not occur. Path searching when
the variables are not orthogonal gives the impression of repeated testing. However, the
main objective is to find the cut-off between the variables that are in the model and
those that are not.

15.8.4.2 Removing irrelevant variables

Irrelevant variables have a t-value of zero in the LDGP. It is the nature of statistical
inference that some irrelevant variables are retained.

As an example, consider the probabilities of rejecting the null (i.e. keeping the vari-
able) in t-testing for K = 3 irrelevant regressors at significance level α (with corre-
sponding critical value cα):

event probability number retained
P (| ti| < cα, ∀i = 1, . . . 3) (1− α)3 0

P (| ti| ≥ cα | | tj | < cα, ∀j ̸= i) 3α (1− α)2 1

P (| ti| < cα | | tj | ≥ cα, ∀j ̸= i) 3 (1− α)α2 2

P (| ti| ≥ cα, ∀i = 1, . . . 3) α3 3

The average number of variables retained, k, for K = 3 is:

k = 3× α3 + 2× 3 (1− α)α2 + 3α (1− α)2 = 3α.

In general, k = Kα irrelevant variables are kept in the model. Then α = 0.05 and
K = 3 imply k = 0.15. Consequently, few spurious variables are ever retained.

This suggests choosing a small α when K is large, for example α = 0.01 when
K = 100. Setting α = 1/K ensures that only one irrelevant variable is retained by
chance (on average).

15.8.4.3 Keeping relevant variables

On the other hand, the smaller α, the harder it is to keep relevant variables.
Relevant variables have a non-zero t-value in the LDGP, and the more significant

they are (the higher their non-centrality), the easier it is to keep them in. As will be clear
intuitively, when a coefficient has an absolute t-value of ψ0 in the population, and we
choose α such that cα = ψ0, we will only keep this variable 50% of the time. In other
words, there is only a 50–50 chance of retaining a variable with an (absolute) t-value of
two when testing at 5%.

The following table gives the approximate power if the hypothesis is tested only
once. The first column is the non-centrality, such that E[t2] = ψ2, and the third column
the probability of retaining the variable. The final column is the probability of retaining
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all four relevant (but independently distributed) variables:

ψ α P (| t| ≥ cα) P (| t| ≥ cα)4

1 0.05 0.16 0.001

2 0.05 0.50 0.063

2 0.01 0.26 0.005

3 0.01 0.64 0.168

4 0.05 0.98 0.902

4 0.01 0.91 0.686

6 0.01 1.00 0.997

15.8.5 Autometrics

The pioneering work of Hoover and Perez (1999) has led to a surge of interest in au-
tomatic econometric model selection. They revisited the experiments of Lovell (1983)
and showed that a computer-based general-to-specific procedure does work well enough
to be useful. Prior to this ‘data-mining’ (also see §16.9) had become a pejorative term
in econometrics, despite the fact that Lovell only considered three simple search meth-
ods (forward selection, maximum R̄2, max-min t) on a very small annual data set (at
least from a current perspective). Hendry and Krolzig (1999) extended the algorithm of
Hoover and Perez (1999) and created PcGets, a user-friendly computer program aimed
at the empirical modeller (see Hendry and Krolzig, 2001).

Autometrics can be seen as the third generation, taking many features of the earlier
implementations, but also differing in some aspects.

The main features of Autometrics are (see Doornik, 2007, for more detail):
• General unrestricted model

The GUM is the starting point for the model reduction procedure, see §15.8.3.
• Presearch

PcGets added several presearches to the algorithm. However, the objective of Auto-
metrics is to have almost the same operating characteristics without presearch. By
default, only lag-reduction presearch is switched on.

• Path search
Hoover and Perez (1999) introduced the multiple-path search which was also
adopted by PcGets. This, however, is an unstructured way of searching the model
space. Autometrics considers the whole search space from the outset using a tree
search, discarding parts in a systematic way.

• Backtesting with respect to the GUM
Termination of a path is not just when no more variable is insignificant, but also
when a backtest of the current reduction with respect to the GUM is rejected. Since
such backtesting is at a user-defined level, this stage is intended to limit the loss of
information (relative to the GUM) that is tolerated in the reduction.
This plays an important role in controling the gauge (i.e., the retention frequency of
irrelevant variables) of the general-to-specific procedure, see Doornik (2008).

• Diagnostic testing
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In addition, every estimated model is subjected to a battery of diagnostic tests.
When any test fails, the model is rejected, and the previous model is a terminal
model of the current path.

• Iteration
Hendry and Krolzig (1999) introduced iteration: if there are several terminals after
a reduction pass, encompassed terminals are removed, and the union of remaining
models forms the basis for another fresh reduction pass. Autometrics implements
this more efficiently, remembering relevant models from one pass to the next.
Autometrics defaults to backtesting w.r.t. GUM 0 (the initial GUM after lag pre-
search) in subsequent iterations, while PcGets used the most recent GUM.

• More variables than observations
A subsequent version of Autometrics extends the algorithm to handle regression
models that have more variables than observations, details are in Castle, Doornik,
and Hendry (2021). This is used extensively in saturation estimation.
Feasible estimators select from the candidate variables in blocks. Selection over
blocks proceeds iteratively until convergence. After this, a final model selection
step can be undertaken. In general, different partitionings into blocks can lead to
different selected models.

• Indicator saturation
Indicator saturation estimators are a general class of methods seeking robust infer-
ence in the presence of unknown numbers and locations of outliers, shifts, breaks
and parameter changes by designing indicators appropriate to the problem. Such
methods do not require the numbers, signs, timings, magnitudes or durations of the
breaks to be known in advance, and can handle shifts at any point in the sample (in-
cluding the last observation). Four indicator-saturation techniques that are readily
available in PcGive:
IIS impulse-indicator saturation for outliers (Hendry, Johansen, and Santos, 2008,

and Johansen and Nielsen, 2009);
SIS step-indicator saturation for location shifts (Castle, Doornik, Hendry, and Pretis,

2015);
TIS trend-indicator saturation for trend breaks (Castle, Doornik, Hendry, and Pretis,

2019, with an application in Walker, Pretis, Powell-Smith, and Goldacre, 2019);
DIS differenced impulse-indicator saturation;

All saturation estimators lead to formulations with more variables than observations.

15.9 Conclusion

PcGive explicitly embodies a methodical approach to econometric modelling which
seeks to reflect the practical realities confronting the investigation of economic time-
series data. This chapter has sketched the principles on which it is based. The next
chapter, 16, confronts how PcGive might be used to handle a number of important
practical problems.
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Part IV completes the econometric discussion by explaining in detail the statistics
reported by PcGive. Chapter 17 notes descriptive statistics, and Chapters 18 and 19
discuss statistics associated with single-equation modelling. These chapters could be
read in a different order if desired, or left for later reference.



Chapter 16

Eleven Important Practical
Econometric Problems

Looking back over the sketch of the methodological approach underlying PcGive in
Chapters 12–15, it seems worth spelling out how to tackle some of the detailed prob-
lems that confront practitioners in many time-series applications, and how the approach
differs from that exposited in many econometrics textbooks. The eleven issues selected
below comprise: §16.1 multicollinearity, §16.2 residual autocorrelation, §16.3 dynamic
specification, §16.4 non-nested hypotheses, §16.5 simultaneous equations bias, §16.6
identifying restrictions, §16.7 predictive failure, §16.8 non-stationarity, §16.9 data min-
ing, §16.10 more variables than observations, §16.11 structural breaks and dummy sat-
uration.

This is not an exhaustive list, but does cover some of the areas of current contention
as well as emphasizing the different approach built into PcGive.

16.1 Multicollinearity

The name multicollinearity was coined by Frisch (1934) (in his book on Confluence
Analysis) to denote the existence of several exact linear relationships connecting a set
of theoretical variables: collinearity was the name for when there was only one depen-
dency. As such, the concept was initially unconnected with the present notion of very
high correlations between observed variables (see Hendry and Morgan, 1989, for a his-
tory of how the present connotations evolved). Perfect collinearity is when an exact
linear dependence exists between a set of variables (see §12.10), though more recently,
‘collinearity’ is generally used to refer to a state of ‘near linear dependence’. For linear
models, however, collinearity is not a property of the model itself, but of the way the
model is parametrized. Consider the equation:

E [yt | zt] = β′zt (16.1)

236
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for k elements in β, expressed in model form as:

yt = β
′zt + ϵt where ϵt ∼ IN

[
0, σ2

ϵ

]
. (16.2)

Since the model is linear, it is invariant under non-singular linear transformations in
that all of its essential properties are unaffected. Let γ denote an arbitrary vector of
constants, and A an arbitrary non-singular k × k matrix; both γ and A are chosen by
the investigator. Then (16.2) can be transformed linearly to:

yt − γ′zt =
(
(β − γ)′ A−1

)
Azt + ϵt, (16.3)

or:
y∗t = β∗′z∗t + ϵt, (16.4)

where y∗t = yt − γ′zt, z∗t = Azt and β∗ = A−1′ (β − γ), so that:

β = A′β∗ + γ. (16.5)

Transformations like (16.3) are used regularly in practice, as when moving from
levels to either differences or differentials between variables. Since A is non-singular,
either β∗ can be estimated and β derived, or vice versa: the β̂ from least squares esti-
mates of (16.2) is always identical to that derived from β̂∗, subject to possible numerical
inaccuracies if the problem is extremely ill-conditioned in one parametrization. Direct
standard errors of β̂ (from (16.2)) or indirect from (16.5) will also be identical.

However, the supposed collinearity in the problem is not at all invariant. For exam-
ple, let:

Q = T−1
T∑

t=1

ztz
′
t,

(the sample second moment of the regressors), and select as the A matrix the inverse
of the matrix of eigenvectors of Q denoted H−1 so Q = HΛH′ where Λ is diagonal,
then:1

Q∗ = T−1
T∑

t=1

z∗t z
∗′
t = AQA′ = H−1HΛH′H−1′ = Λ, (16.6)

which is, of course, diagonal (see the related analysis in Leamer, 1983). The eigenval-
ues in Λ are not invariants of the model either, since other choices of A are admissible
(compare Belsley, Kuh, and Welsh, 1980).

Thus, the important issue in a model is not the degree of correlation between the
variables, which is only loosely associated with the information content of the data,
but the precision with which the parameters of interest (for example, β or β∗) can be
determined.

1This corresponds to Principal Components analysis but is not recommended as a practical
procedure: it is merely one of a class of possible illustrations of the fact that collinearity is not a
property of a model, but of a parametrization of that model.
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Interpretable parameters often correspond to relatively orthogonal variables (see, for
example, Davidson, Hendry, Srba, and Yeo, 1978), and linear combinations of the origi-
nal variables which lack variability can be deleted for parsimony. Consequently, PcGive
advises transforming from β to β∗ using information gained from previous studies and
from theoretical analyses, rather than data-based transformations like Principal Com-
ponents where the parameters will change if the sample is altered. Then β∗s which
are near zero (both in terms of statistical significance and economic importance) can
be eliminated without much altering the estimates of those retained. The sequence of
reductions and associated transformations is monitored by PcGive so that the validity of
any given simplifications can be checked. The final parsimonious, interpretable model
should generally not manifest much collinearity (in the sense of high intercorrelations
of the z∗s), and can be tested against all the information sets described in §15.7.

16.2 Residual autocorrelation

It should be obvious by this stage how PcGive treats this issue! As discussed in §13.4
(especially §13.4.7), the analysis should commence from a sufficiently general lag spec-
ification such that the residuals should be close to white noise. If residual autocorrela-
tion is discovered at any stage, it is taken as a symptom of poor model design, and the
whole specification process should be reviewed. It is never arbitrarily assumed to be
error autocorrelation, which was shown to correspond to residual autocorrelation only
when there are common factors in the dynamics. However, if COMFAC tests suggest
that valid common factors can be extracted, then a more parsimonious model with au-
toregressive errors can be designed and estimated (see Hendry and Mizon, 1978). Both
the Wald tests based on Sargan (1980b), and the likelihood-ratio tests of RALS esti-
mates against the general dynamic model, should be used prior to imposing common
factors owing to the dependence of Wald tests on the formulation and potential multiple
optima in the RALS likelihood function.

16.3 Dynamic specification

This is the obverse of §16.2, given the intimate links between dynamic and stochastic
specification. PcGive assumes that general lag polynomials will be specified for every
variable, so allows easy creation of any number of lags per variable. The theoretical
analysis of the main single-equation dynamic models used in econometrics in §13.4 re-
vealed the many weaknesses of arbitrarily assuming that one particular type happened
to apply to the specific measure of the variables used in the problem under study. Con-
sequently, a large section of PcGive is devoted to analyzing the empirical results arising
from general dynamic models, in terms of long-run responses, roots of lag polynomi-
als, etc. Simple procedures are offered for testing for unit roots, and for transforming
to EqCMs.
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16.4 Non-nested hypotheses

Many economic phenomena have competing theoretical explanations, especially in
macro-economics. The traditional empirical approach in econometrics has been to for-
mulate a model within the given theory framework and test its restrictions against data,
corroborating or rejecting as the evidence is favourable or unfavourable. Unfortunately,
the same data can corroborate conflicting models (as in Ahumada, 1985, for example).
Moreover, if models are redesigned in the light of adverse test results (as happens in
practice), then rejection of theory-models rarely occurs. The outcome of such method-
ologies is a proliferation of non-nested empirical models all claiming to be acceptable,
despite being mutually inconsistent.

PcGive confronts this problem from two perspectives, both of which are implica-
tions of the theory of reduction discussed in Chapter 15 (for greater detail, see Hendry
and Richard, 1983). First, remember that all models are derived from the process that
actually generated the data, which is certainly a congruent representation, and hence
are nested within that process. The model-based analogue is general-to-specific, which
would eliminate many of the contending hypotheses if the initial general statistical
model was formulated so as to embed the contending explanations as special cases:
this was discussed in §16.3. Secondly, the traditional ‘corroborate or reject’ strategy is
augmented by the requirement that an acceptable model should be able to account for
the results obtained by rival explanations of the same phenomena: this is the theory of
encompassing discussed in Chapter 15.7.6. Whether or not other hypotheses are non-
nested with respect to the model under study ceases to matter in principle, although
there are always practical problems in finite samples. The models must share a com-
mon probability framework, as well as seek to explain the same phenomena: the former
may not occur, but will do so for any investigators who either claim their models are
complete, or who accept the need for models to be congruent.

Encompassing is closely related to the well-established class of procedures called
mis-specification analyses, where a data generation process (DGP) is assumed known
and the consequences of various specification mistakes are studied (such as omitted
variables). Since the DGP is indeed correct in such analyses, any specification errors
postulated will occur precisely as the analysis predicts. In encompassing, the DGP
is not known, but a model (say M1) is implicitly claiming to represent it adequately.
Other models (for example, M2) are, by implication, mis-specified hypotheses. The
encompassing question is whether or not M1 mimics the DGP by correctly predicting
the results of the mis-specified M2: that provides a basis for testing if M1 adequately
represents the DGP. Failure to do so is a rejection of the adequacy of M1; success
suggests that M2 is inferentially redundant.

Several encompassing statistics are preprogrammed in PcGive to test such hypothe-
ses, both to evaluate any given model stringently, and to help reduce the proliferation
of competing explanations. For an exposition, see Hendry and Richard (1989).
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16.5 Simultaneous equations bias
The simultaneous equations paradigm is so dominant in both econometrics textbooks
and Walrasian equilibrium economics that the prevalence of models with contempora-
neous conditioning variables in the earlier analyses needs some comment. First, the
theory of weak exogeneity described in §15.7 delineates those cases where contem-
poraneous conditioning is valid from those where it is not. If weak exogeneity is not
sustainable, but the parameters of interest are identifiable (see §16.6 following), then
the joint density must be analyzed to ensure efficient inference. If yt depends on xt
and xt on yt then conditioning will not yield the parameters of interest. However, in
other situations, contemporaneous conditioning can be valid. One sufficient condition
is that agents form contingent plans, acting when the necessary information material-
izes: since the actual joint density Dy,x (yt, xt|θ) thereby factorizes into Dy(yt|xt,ϕ1)

and Dx(xt|ϕ2), and the former captures the parameters of interest, then weak exogene-
ity holds if the respective parameter spaces also satisfy the requirements for a cut, so
that ϕ1 and ϕ2 are variation free.

Consider a situation in which both yt and xt are interest rates to be modelled, yet
yt is regressed on xt. At first sight, simultaneity bias seems likely. However, yt − xt (a
spread) and xt (a level) equally (and perhaps even more sensibly) could be analyzed as
functions of past information alone, without any possibility of simultaneity bias. Thus,
unless the first regression actually delivers a coefficient larger than unity, it seems odd
to categorize it as being biased from yt and xt being simultaneous (even though in
this example, yt and xt are indeed jointly determined). Thus, ‘simultaneity’ is another
characteristic that is not invariant under linear transformations.

A more potent analysis ensues if some of the data density parameters vary over the
sample, perhaps because of regime shifts. When any coefficients are biased, their bias is
dependent on the particular data correlations, and hence will alter as those data correla-
tions change (see, for example, Hendry and Neale, 1988). Thus, no constant conditional
model can be obtained, and that is reasonably realistic of many macro-economic time
series. Consequently, if a conditional model is constant, yet the marginal model for
the conditioning variables is known to vary, this is a strong counter-argument to any
claim of simultaneity bias (see Favero and Hendry, 1992). The recursive procedures in
PcGive provide a powerful tool for such analyses. Hendry (1988) extends this analysis
to models with expectational variables.

16.6 Identifying restrictions
Sims (1980) characterized as ‘incredible’ many of the over-identifying restrictions im-
posed in large macro-econometric models, proposing as an alternative a vector autore-
gression (VAR)-based methodology. The concepts and methods described above offer
several insights into Sims’ assertions. Identification’ has three attributes, discussed in
Hendry (1997), namely ‘uniqueness’, ‘satisfying the required interpretation’, and ‘cor-
respondence to the desired entity’. Clearly, a non-unique result is not identified, so the
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first attribute is necessary: the discussion in Koopmans, Rubin, and Leipnik (1950) of
conditions for the uniqueness of coefficients in simultaneous systems makes that clear.
However, it is insufficient to sustain useful models, since uniqueness can be achieved
simply by imposing enough arbitrary restrictions (and that was indeed criticized by
Sims, 1980, inter alia). Secondly, there may exist a unique combination of several re-
lationships which is incorrectly interpreted as just one of those equations: for example,
a mix of supply and demand forces in a reduced form that has a positive price effect,
but is wrongly interpreted as a supply relation. Finally, a unique, interpretable model
of a money-demand relation may in fact correspond to a Central Bank’s supply sched-
ule, and this too is sometimes called ‘a failure to identify the demand relation’. Thus,
Sims seems to be addressing the third aspect, and apparently claiming that the imposed
restrictions do not correspond to ‘reality’.

Taking that interpretation of Sims’ critique, the restrictions embodied in some
macro models have been both arbitrarily imposed and not tested. This could happen
in practice from following a simple-to-general modelling strategy in which the restric-
tions arose merely because they were not considered. We concur with that criticism
under this interpretation in those cases where it arises. Nevertheless, we propose an
alternative solution, which focuses on two issues:

1. which model isolates the actual invariants of the economic process (super exogene-
ity)?

2. which if any model form (structural system or VAR) encompasses or accounts for
the others’ results?

Since VARs are derived, rather than autonomous, representations (relative to decision-
making structures of economic agents), their constancy necessitates the constancy of
every related parameter in the economic system, so they are unlikely to achieve (1).
Conversely, their profligate parametrizations virtually ensure an excellent data fit, so
that they are challenging rivals for any structural model to encompass, noting that vari-
ance dominance is necessary but not sufficient for encompassing here (see Hendry and
Mizon, 1993).

As before, DGPs where parameters change in some of the marginal processes al-
low a more penetrating analysis of conditional models which claim to embody constant
parameters of interest. Invalid restrictions on models in changing DGPs will generally
lead to non-constant relationships, so that constant sub-systems against a background
of a changing mechanism offer strong support to any claim about valid specification.
Whether or not constant parameters need occur in models is considered in §16.7 below.
Constant sub-systems cannot be confounded with any of the changing equations (ex-
cept by chance cancelling), and are therefore identified relative to them. This last point
derives from the analysis in Working’s consolidation of identification conditions (Work-
ing, 1927). Finally, so-called identifying restrictions are no different in principle from
any other form of restriction such as exclusion, linearity, homogeneity etc. Since maxi-
mum likelihood methods are equivariant to 1-1 transformations of the parameters (that
is, when θ is mapped to ψ = f(θ), then θ̂ is mapped to ψ̂ = f(θ̂)), estimating a struc-
tural model is equivalent to estimating the reduced form subject to certain within- and
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across-equation restrictions. It is well known that any just-identified model entails an
unrestricted reduced form. Thus, unless Sims (1980) either denies the existence of any
valid restrictions on reduced forms, which seems inconsistent with his ostensible views
on VAR modelling in Doan, Litterman, and Sims (1984), or denies that restrictions can
ever correspond to a structural parametrization, which would exclude proportionalities
between reduced form parameters inter alia, then his critique lacks force as an issue of
principle, and becomes a practical concern as to whether specific structural models are
indeed successful data reductions.

That introduces the topic of testing in simultaneous systems, and there are three
related implications from Chapter 15. First, the conventional test of over-identifying
restrictions is interpretable as a test of whether the structural model parsimoniously en-
compasses the unrestricted reduced form, or system as it was denoted above. Secondly,
the system must itself be a valid baseline for testing against, which was the thrust of the
general-to-specific notion as applied to modelling joint densities (see Hendry, Neale,
and Srba, 1988). Thirdly, identifying restrictions on structural parameters are meaning-
less if the claimed parameters are not constant. Consequently, a preferable modelling
strategy seems to be: first construct a congruent statistical system (which may well be
a VAR), then simplify it via interpretable restrictions (which may be structural), and
finally test that the resulting econometric model both is congruent and parsimoniously
encompasses the statistical system. This is precisely the strategy adopted in both Pc-
Give for single equations and for systems.

16.7 Predictive failure

The prevalence of significant mispredictions and parameter changes in econometric
models has been one of the greatest problems confronting applied econometricians
(see, for example, Judd and Scadding, 1982, for a history of predictive failure in US
money-demand modelling). However, views differ widely as to the explanation for the
problem and Baba, Hendry, and Starr (1992) propose one constant-parameter model
over the period to 1989. To PcGive users, the sheer existence of the phenomenon of
predictive failure is important: model discrimination is easier in worlds of parameter
change than in constant processes. Next, it behoves modellers to check the historical
constancy of any claimed relationship; all too often, public post-sample predictive fail-
ures merely highlight previously untested within-sample non-constancies (see Hendry;
Hendry, 1979, 1988): hence the easy-to-use recursive procedures and associated tests
in PcGive. Third, the claim that certain predictive failures are owing to confounding
expectations and behavioural dynamics (one aspect of the critique in Lucas, 1976) is
testable (that is, potentially confirmable or refutable) by employing both encompassing
and super exogeneity tests (see Hendry, 1988). Indeed, this point has been exploited
in both preceding sections. Finally, it has proved possible in practice to develop mod-
els which have good track records over a decade or more (see, for example, Davidson,
Hendry, Srba, and Yeo, 1978, and Hendry and Ericsson, 1991). Even so, since nothing
can guarantee the invariance of human behaviour, regular monitoring for innovation and
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change is wise. Models are a form of codified accumulated knowledge which progres-
sively increase our understanding of economic behaviour, and consequently have to be
adaptive to changing environments.

Some authors have argued for changing-parameter models as a better approximation
than constant-parameter models to a reality characterized by predictive failure. It is
important to realize that these two types of model only reflect different assumptions
about which parameters are constant, as the former do not avoid constancy assumptions.
For example, consider the model:

yt = x′
tβt + ϵt where ϵt ∼ IN

[
0, σ2

]
and:

βt = Kβt−1 + νt with νt ∼ IN [0,Ω]

whereβ
0

is given. Although the {βt} evolve, the new constancies are shown underlined
and include assumptions about constant error variances, constant (zero) serial correla-
tion, constant distributional shape etc. Which set of constancies to adopt depends on
the specification of the xt as determinants of yt, the functional form linking yt to xt,
and the constancies in the DGP. There are no principles favouring any particular type of
constancy claim. What is important is that evidence should be presented on the actual
constancy (or otherwise) of whatever meta-parameters are taken to be the basic con-
stancies of the process being modelled. Similarly, the ‘structural time-series models’ in
Harvey and Shephard (1992) can be re-represented as a restricted ARMA model, with
constant parameters.

Predictive failure does not entail non-constant parameters in the initial model. This
may seem paradoxical, but can be explained as follows: the definitions here are from
Hendry (1995a), and the following analysis builds on Hendry (1996) and Hendry and
Doornik (1997). A parameter θ ∈ Θ ⊆ Rk must be constant across realizations of the
stochastic process it indexes, but need not be constant over time. It is constant over a
time interval T = {. . . ,−1, 0, 1, 2, . . .} if θ takes the same value for all t ∈ T . A
model is constant if all its parameters are. Even so, we have just seen that constant
models can have time-varying coefficients, which are, in effect, latent variables that
depend on more basic parameters that are constant.

All 1 − 1 transforms of parameters are valid, so zero can be a population value of
a parameter ψ in ψ = h (θ) ∈ Φ ⊆ Rk. Let the original parameters for the density
Dy|z(yt|zt;θ) of yt over T1 be θ given a conditioning vector zt, where sequential
factorization of the T1-sample joint density yields:

T1∏
t=1

Dy|z (yt | zt;θ) . (16.7)

Consider a setting where to adequately characterize the whole T -sample requires an
extended model with parameters ρ ⊆ RK (for K > k) given K variables xt:

T∏
t=1

Dy|z (yt | xt;ρ) . (16.8)
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In (16.8), we assume that ρ is constant.
Prima facie, the model in (16.7) seems non-constant, but if there exists a 1 − 1

mapping from ρ to δ (say), such that:

δ = g (ρ) = (θ,0) , (16.9)

then the model is constant despite the apparent expansion. For example, when xt coin-
cides with zt over the T1-sample, but is an alternative measure for the same construct
over the forecast period, then (16.7) is:

T1∏
t=1

Dy|z (yt | zt;θ) =
T1∏
t=1

Dy|z (yt | xt;θ) , (16.10)

and appropriate transforms of (16.8) can re-express it as:

T∏
t=1

Dy|z (yt | xt; δ) =

T∏
t=1

Dy|z (yt | xt;θ) . (16.11)

An empirical example of this situation is when an outside interest rate rc is used as
a measure of the opportunity cost of holding money over a period where the own rate
ro is zero; the introduction of a non-zero own rate can induce forecast failure, perhaps
countered by adding ro to the model, thereby demonstrating apparent non-constancy.
However, successfully replacing the previous measure by the differential rc − ro as the
correct measure of opportunity cost, with the coefficient on the added variable becoming
zero, then reduces the model back to the original dimension with unchanged parameters.

Constancy has not lost its operational content because of this possibility: (16.7)
is not constant for all T in the space of (yt : zt). Moreover, there need be no g (·)
which reproduces the original parameters augmented by zeroes. However, the result
does imply that there are no possible in-sample tests (up to T1) for later predictive
failure, since the observation of failure depends on how the model is extended, not on
its within-sample properties.

At a practical level, the idea of designing models to have nearly orthogonal
parametrizations offers some robustness to unmodelled changes since such changes get
reflected in increased error variance rather than changing regression parameters.

16.8 Non-stationarity
Three particular forms of non-stationarity have appeared in this book:
1. I(1), or integrated behaviour, removable by suitable differencing or cointegration

transformations;
2. parameter changes or regime shifts, removable for a subset of parameters of interest

by establishing the invariants; and
3. inherent non-stationarity owing to innovative human behaviour or natural processes,

which as yet we do not know how to remove or model.
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Concerning (1), it must be stressed that differencing can only remove unit roots and
cannot per se remove either of (2) or (3) (although it will also mitigate regime shifts in
deterministic factors: see Clements and Hendry; Clements and Hendry, 1998, 1999).
As noted in Chapter 13, however, analyzing only differences also removes all long-run
or cointegrating information, and hence is not a sensible generic strategy. Conversely,
long-run economic theoretic information should be tested as satisfying cointegration
(see Engle and Granger, 1987, Granger, 1986, Johansen, 1988, Phillips, 1991, and
Banerjee, Dolado, Galbraith, and Hendry, 1993 inter alia).

Concerning (2), the establishing of constant and invariant parameters to character-
ize economic behaviour has been the main thrust of much of the earlier analysis. Many
implications of constancy claims are testable and should be tested. Even though every
marginal relationship may be affected by structural breaks, linear combinations (per-
haps corresponding to conditional relations) need not be, just as linear combinations
removed unit roots when cointegration was found: this is called co-breaking in Hendry
(1995c), and analyzed in Hendry and Massmann (2007).

Finally, (3) raises a number of interesting issues, most as yet unexplored. Can one
establish whether or not a process is inherently non-stationary (in the sense of having
non-constant unconditional first and second moments)? It is easy to invent complicated
mechanisms dependent on mixtures of unlikely but time-independent events, which
would seem to be non-stationary, despite having constant unconditional moments. How
well can learning and innovation themselves be modelled by constant parameter pro-
cesses? Theoretical analyses of R&D, technical change, financial innovation etc. have
progressed, so a constant meta-parametrization in a high dimensional non-linear mech-
anism cannot be excluded a priori. This is especially important now that a theory for
analyzing integrated processes is available to deal with, for example the accumulation
of knowledge and technique. Do the various forms of non-stationarity interact? Here
we are on slightly firmer ground – yes they do. A simple I(0) process with a large sus-
tained shift will be quite well described as I(1) since differencing reduces the shift to a
one-off blip (see Perron, 1989, and Hendry and Neale, 1991). For example, the artifi-
cial data used above have no unit roots, but seem I(1) on conventional scalar unit-root
tests. Note, again, that a recursive testing procedure for a unit root may help clarify the
relevant state of nature. Alternatively, tests for technical progress changing must allow
for the distributional theory to be based on integrated and not on stationary processes.
It would seem that lots of interesting findings await discovery in this area.

16.9 Data mining
Data mining has been characterized in many ways, with a common theme being the
reuse of the same data to both estimate and revise a model. If that is the intended
meaning of data mining, then in economics, either you must be omniscient or you will
data mine: unless a model emerges perfect on the first try, it must be revised in the light
of data evidence. Leamer (1978) offers an excellent treatment, commenting that his:

‘book is about “data mining”. It describes how specification searches can be
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legitimately used to bring to the surface the nuggets of truth that may be buried
in a data set. The essential ingredients are judgment and purpose’.

Although the standpoint of PcGive is not Bayesian, much of the analysis, logic, and
common sense are similar.

The tools relevant to this issue from Chapter 15 are:
(a) a dichotomy between the contexts of discovery (where you will reuse data in the

process of model construction) and of evaluation (where one-off testing on gen-
uinely new information allows valid model destruction);

(b) a theory of reduction to explain how empirical models are derived from the data
generating mechanism and hence do not in general have autonomous errors;

(c) a typology of information sets which delineates the necessary conditions for a model
to be congruent;

(d) the concept of model design to achieve congruency in the context of discovery,
allowing conditioning of later inferences on the congruent model specification as
the best representative of the DGP;

(e) a general-to-specific simplification approach to model design, mimicking reduc-
tion, moving from a congruent statistical model to a parsimonious and interpretable
econometric model thereof, which is theory consistent and encompasses both the
general model and other competing models;

(f) the notion that the validity of the chosen model is a property that is intrinsic to the
model and not to the process of its discovery; later evaluation will sort the gold from
the pyrites.
As a consequence, data mining has to be viewed as an unstructured activity leading

some investigators to run ‘literally hundreds of regressions’ on data sets with fewer than
one hundred observations. In such an approach, masses of ore are mined and sifted to
pick out the bits of gold which appeal to the particular investigator. As remarked in
Hendry (1980), ‘econometric fool’s gold’ is often the result. Gilbert (1986) neatly
characterizes the view PcGive takes of such mining: divide all of the output into two
piles, one consistent with (and encompassed by) the selected model and one inconsistent
with it. ‘Weak data mining’ is when the second pile has any members and ‘strong data
mining’ is when the anomalous findings are not reported as caveats to the claimed
model. A related weak form is deliberate non-testing for fear of unfavourable results,
so the research assistant does the first pre-filter (or loses the initial sifting sets of runs)
– for an interesting analysis of the general problem in science, see Kohn (1987).

Conversely, once a congruent model has been developed by a structured search
and rigorously tested, it is sensible to condition further inferences on that congruent
model since by definition no better model is currently available. As an aside, all of the
numerical values of coefficients, standard errors etc. are the same irrespective of the
number of steps in the simplification (or search) process: the only issue is whether the
precision recorded should in some sense be discounted because of the search process. If
in fact the variances are too small owing to simplifying, over-rejection of such models
outside of sample would occur: to date, the evidence is rather the opposite since many
of the results seem surprisingly robust over long time periods (see Hendry, 1989).
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A major recent development that has thrown considerable light on ‘data mining’ as
a critique of empirical modelling is the computer automation of Gets, noted in §15.8.
Moving from the relatively poor performance of every model-selection method investi-
gated by Lovell (1983), Hoover and Perez (1999) achieved significant progress towards
a viable Gets algorithm, which exhibited excellent simulation characteristics. Subse-
quently, Hendry and Krolzig (1999) improved on this with PcGets. For example, con-
sider experiment 8 of Hoover and Perez (1999), with T = 139, 3 relevant variables and
37 irrelevant ones. A simplistic search procedure such as stepwise regression will find
the correct variables only 50% at the time, while for Autometrics this is almost 100%
(when running both at 1%). At the same time Autometrics includes fewer irrelevant vari-
ables. Thus, the performance of the current generation of automatic general-to-specific
algorithms is excellent.

16.10 More variables than observations
Model building when there are more variables than observations has always been con-
sidered as infeasible. Indeed, PcGive would refuse to run a regression in that case.
Despite that, an empirical modeller may be confronted with such a situation: compa-
nies collect a lot of (possibly) relevant information, which may lead to an infeasible
GUM, in particular when considering lags.

As an example, consider four groups of candidate variables xi,t, for i = 1, . . . , 4

ni << T but n = n1 + · · ·+ n4 > T . The DGP is:

yt =

4∑
i=1

β′
ixi,t + ϵt where ϵt ∼ IN

[
0, σ2

ϵ

]
, (16.12)

but βi contains many zeros, so k << T . One possible solution is to run Autometrics
on six ‘general models’ (i, j = 1, 4; i ̸= j):

yt = γ
′
ixi,t + γ

′
jxj,t + u

(i,j)
t where u

(i,j)
t c̃ IN

[
0, σ2

u(i,j)

]
. (16.13)

So each combination of two blocks is reduced (from a GUM that can be estimated).
The union of these six reductions then forms the GUM for the final stage.

This assumes that the sub-models are congruent against their own information, but
if not, HAC standard errors could be used. The union of all resulting terminal models
is the next GUM. When xi,t, xj,t are mutually orthogonal, this delivers the ‘correct’
answer if initially using a loose significance, followed by stringent critical values at the
final, combined, stage: see Hendry and Krolzig (2005).

For n1 = · · · = n4 = 50 << T = 150 and a 1% level: 2 irrelevant variables are
retained on average despite n = 200.

When all xi,t and xj,t are positively correlated, the efficiency of selection is lower
than the single stage method (if it were feasible). Another problem with this procedure
is that, when some xi,t and xj,t are negatively correlated, each is required for the other
to be included. This is the same problem that stepwise and forward selection methods
have (although on a more fundamental scale than the block-wise selection).
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The method just described is not the default method that Autometrics uses when
there are more variables than observations. However, the insight that some model build-
ing is feasible in this situation is exciting, and opens up many new possibilities.

16.11 Structural breaks and dummy saturation
Dummy saturation is the canonical application of more variables than observations: a
dummy variable is added for each observation. When there are no other regressors,
this results in a perfect fit, and nothing is learned. Instead, add half of the indicator
variables, select using Autometrics; then the other half and select again. Now combine
terminal models and select as usual.

Hendry, Johansen, and Santos (2004) consider the theoretical properties of this esti-
mator of the mean, and discuss a feasible algorithm. If x1, . . . , xT are IID

[
µ, σ2

ϵ

]
, then

the estimator µ̃ has the large sample distribution:

T 1/2 (µ̃− µ)→ N
[
0, σ2

ϵσ
2
µ

]
,

where σ2
µ depends on the critical value cα, by truncating the residuals, and the form of

the distribution f (·) of x. They show αT impulses are retained by chance.
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The Statistical Output of PcGive





Chapter 17

Descriptive Statistics in PcGive

The Descriptive Statistics entry on the Model menu involves the formal calculation
of statistics on database variables. Model-related statistics are considered in Chapters
18 and 19. This chapter provides the formulae underlying the computations. A more
informal introduction is given in the tutorial Chapter 3. PcGive will use the largest
available sample by default, here denoted by t = 1, . . . , T . It is always possible to
graph or compute the statistics over a shorter sample period.

17.1 Means, standard deviations and correlations

This reports sample means and standard deviations of the selected variables:

x̄ =
1

T

T∑
t=1

xt, s =

√√√√ 1

T − 1

T∑
t=1

(xt − x̄)2.

The correlation coefficient rxy between x and y is:

rxy =

∑T
t=1 (xt − x̄) (yt − ȳ)√∑T

t=1 (xt − x̄)
2∑T

t=1 (yt − ȳ)
2
. (17.1)

The correlation matrix of the selected variables is reported as a symmetric matrix with
the diagonal equal to one. Each cell records the simple correlation between the two rel-
evant variables. The same sample is used for each variable; observations with missing
values are dropped.

251
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17.2 Normality test and descriptive statistics
This is the test statistic described in §19.5.4, which amounts to testing whether the
skewness and kurtosis of the variable corresponds to that of a normal distribution. Miss-
ing value are dropped from each variable, so the sample size may be different for each
variable.

17.3 Autocorrelations (ACF) and Portmanteau statistic
This prints the sample autocorrelation function of the selected variables, as described in
§19.5.2. The same sample is used for each variable; observations with missing values
are dropped.

17.4 Unit-root tests
A crucial property of any economic variable influencing the behaviour of statistics in
econometric models is the extent to which that variable is stationary. If the autoregres-
sive description

yt = α+

n∑
i=1

γiyt−i + ut, (17.2)

has a root on the unit circle, then conventional distributional results are not applicable
to coefficient estimates. As the simplest example, consider:

xt = α+ βxt−1 + ϵt where β = 1 and ϵt ∼ IN
(
0, σ2

ϵ

)
,

which generates a random walk (with drift if α ̸= 0). Here, the autoregressive coeffi-
cient is unity and stationarity is violated. A process with no unit or explosive roots is
said to be I(0); a process is I (d) if it needs to be differenced d times to become I(0) and
is not I(0) if only differenced d− 1 times. Many economic time series behave like I(1),
though some appear to be I(0) and others I(2).

The Durbin–Watson statistic for the level of a variable offers one simple character-
ization of this integrated property:

DW (x) =

∑T
t=2 (xt − xt−1)

2∑T
t=1 (xt − x̄)

2
. (17.3)

If xt is a random walk, DW will be very small. If xt is white noise, DW will be around 2.
Very low DW values thus indicate that a transformed model may be desirable, perhaps
including a mixture of differenced and disequilibrium variables.

An augmented Dickey–Fuller (ADF) test for I(1) against I(0) (see Dickey and Fuller,
1981) is provided by the t-statistic on β̂ in:

∆xt = α+ µt+ βxt−1 +

n∑
i=1

γi∆xt−i + ut. (17.4)
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The constant or trend can optionally be excluded from (17.4); the specification of the
lag length n assumes that ut is white noise. The null hypothesis is H0: β = 0; re-
jection of this hypothesis implies that xt is I(0). A failure to reject implies that ∆xt
is stationary, so xt is I(1). This is a second useful description of the degree of in-
tegratedness of xt. The Dickey–Fuller (DF) test has no lagged first differences on the
right-hand side (n = 0). On this topic, see the Oxford Bulletin of Economics and Statis-
tics (Hendry, 1986, Banerjee and Hendry, 1992), and Banerjee, Dolado, Galbraith, and
Hendry (1993). To test whether xt is I(1), commence with the next higher difference:

∆2xt = α+ µt+ β∆xt−1 + λxt−1 +

n∑
i=1

γi∆xt−i + ut. (17.5)

Output of the ADF(n) test of (17.4) consists of:

coefficients α̂ and µ̂ (if included), β̂, γ̂1, . . . , γ̂n,
standard errors SE(α̂), SE(µ̂), SE(β̂), SE(γ̂i),
t-values tα, tµ, tβ , tγi

,
σ̂ as (18.10),
DW (17.3) applied to ût,
DW(x) (17.3) applied to xt,
ADF(x) tβ ,
Critical values
RSS as (18.11).

Most of the formulae for the computed statistics are more conveniently presented in the
next section on simple dynamic regressions, but the t-statistic is defined (e.g., for α̂)
as tα = α̂/SE(α̂), using the formula in (18.5). Critical values are derived from the
reponse surfaces in MacKinnon (1991), and depend on whether a constant, or constant
and trend, are included (seasonals are ignored). Under the null (β = 0), α ̸= 0 entails
a trend in {xt} and µ ̸= 0 implies a quadratic trend. However, under the stationary
alternative, α = 0 would impose a zero trend. Thus the test ceases to be similar if the
polynomial in time (1, t, t2 etc.) in the model is not at least as large as that in the data
generating process (see, for example, Kiviet and Phillips, 1992). This problem suggests
allowing for a trend in the model unless the data is anticipated to have a zero mean
in differences. The so-called Engle-Granger two-step method amounts to applying the
ADF test to residuals from a prior static regression (the first step). The response surfaces
need to be adjusted for the number of variables involved in the first step: see MacKinnon
(1991).

The default of PcGive is to report a summary test output for the sequence of
ADF(n). . .ADF(0) tests. The summary table lists, for j = n, . . . , 0:
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D-lag j (the number of lagged differences),
t-adf the t-value on the lagged level: tβ ,
beta Y 1 the coefficient on the lagged level: β,
σ̂ as (18.10),
t-DY lag t-value of the longest lag: tγj

,
t-prob significance of the longest lag: 1− P

(
|τ | ≤

∣∣tγj

∣∣),
AIC Akaike criterion, see §18.2.12
F-prob significance level of the F-test on the lags dropped up to that point,

Critical values are given, and significance of the ADF test is marked by asterisks: ∗

indicates significance at 5%, ∗∗ at 1%.

17.5 Principal components analysis

Principal components analysis (PCA) amounts to an eigenvalue analysis of the corre-
lation matrix. Because the correlation matrix has ones on the diagonal, its trace equals
k when k variables are involved. Therefore, the sum of the eigenvalues also equals k.
Moreover, all eigenvalues are non-negative.

The eigenvalue decomposition of the k × k correlation matrix C is:

C = HΛH′,

where λ is the diagonal matrix with the ordered eigenvalues λ1 ≥ . . . ≥ λk ≥ 0 on the
diagonal, and H = (h1, . . . ,hk) the matrix with the corresponding eigenvectors in the
columns, H′H = Ik. The matrix of eigenvectors diagonalizes the correlation matrix:

H′CH = Λ.

Let (x1, . . . ,xk) denote the variables selected for principal components analysis (a
T × k matrix), and Z = (z1, . . . , zk) the standardized data (i.e. in deviation from their
mean, and scaled by the standard deviation). Then Z′Z/T = C. The jth principal
component is defined as:

pj = Zhj = z1h1j + . . .+ zkhkj ,

and accounts for 100λj/k% of the variation. The largest m principal components to-
gether account for 100

∑m
j=1 λj/k% of the variation.

Principal components analysis is used to capture the variability of the data in a small
number of factors. Using the correlation matrix enforces a common scale on the data
(analysis in terms of the variance matrix is not invariant to scaling). Some examples of
the use of PCA in financial applications are given in Alexander (2001, Ch.6).

PCA is sometimes used to reconstruct missing data on y in combination with data
condensation. Assume that T observations are available on y, but T + H on the re-
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maining data, then two methods could be considered:

Step Data Sample Method Output
1 y : X T PCA m,λ1, . . . , λm
2 X T +H PCA p1, . . . ,pm

3 P T +H − ŷ1 = µ0 +
∑m

i=1 λipi

1 X T +H PCA m,p1, . . . ,pm

2 y : 1 : P T OLS β0, β1, . . . , βm
3 1 : P T +H − ŷ2 = β̂0 +

∑m
i=1 β̂ipi

More recently, PCA has become a popular tool for forecasting.

17.6 Correlogram, ACF

Define the sample autocovariances {ĉj} of a stationary series xt, t = . . . , T :

ĉj =
1

T

T∑
t=j+1

(xt − x̄) (xt−j − x̄) , j = 0, . . . , T − 1, (17.6)

using the full sample mean x̄ = 1
T

∑T
t=1 xt. The variance σ̂2

x corresponds to ĉ0.
The autocorrelation function (ACF) plots the series {̂rj} where r̂j is the sample

correlation coefficient between xt and xt−j . The length of the ACF is specified by the
user, leading to a figure which shows (̂r1, r̂2, . . . , r̂s) plotted against (1, 2, . . . , s) where
for any j when x is any chosen variable:

r̂j = ĉj/ĉ0, j = 0, . . . , T − 1. (17.7)

The first autocorrelation, {̂r0}, is equal to one, and omitted from the graphs.
The asymptotic variance of the autocorrelations is 1/T , so approximate 95% error

bars are indicated at ±2T−1/2 (see e.g. Harvey, 1993, p.42).
If a series is non-stationary, the usual definition of a correlation between succes-

sive lags is required: see Nielsen (2006a). This comment also applies to the partial
autocorrelation function described in the next section.

17.7 Partial autocorrelation function (PACF)

Given the sample autocorrelation function {̂rj}, the partial autocorrelations are com-
puted using Durbin’s method as described in Golub and Van Loan (1989, §4.7.2). This
corresponds to recursively solving the Yule–Walker equations. For example, with au-
tocorrelations, r̂0, r̂1, r̂2, . . ., the first partial correlation is α̂0 = 1 (omitted from the
graphs). The second, α̂1, is the solution from(

r̂0
r̂1

)
=

(
r̂0 r̂1
r̂1 r̂0

)(
α̂0

α1

)
,
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et cetera.

17.8 Periodogram

The periodogram is defined as:

p (ω) = 1
2π
∑T−1

j=−T+1 ĉ|j|e
−iωj = 1

2π
∑T−1

j=−T+1 ĉ|j| cos (jω)

= ĉ0
2π
∑T−1

j=−T+1 r̂|j| cos (jω) ,

for ω = 0, 2π/T, 4π/T, . . . , (int(T/2)2π)/T.

(17.8)

Note that p(0) = 0.
When the periodogram is plotted, only frequencies greater than zero and up to π

are used. Moreover, the x-axis, with values 0, . . . , π, is represented as 0, . . . , 1. So,
when T = 4 the x coordinates are 0.5, 1 corresponding to π/2, π. When T = 5, the x
coordinates are 0.4, 0.8 corresponding to 2π/5, 4π/5.

17.9 Spectral density

The estimated spectral density is a smoothed function of the sample autocorrelations
{̂rj}, defined as in (17.7). The sample spectral density is then defined as:

ŝ (ω) =
1

2π

T−1∑
j=−(T−1)

K (j) r̂|j| cos (jω) , 0 ≤ ω ≤ π, (17.9)

where |·| takes the absolute value, so that, for example, r̂|−1| = r̂1. The K (·) function
is called the lag window. OxMetrics uses the Parzen window:

K (j) = 1− 6
(

j
m

)2
+ 6

∣∣ j
m

∣∣3 , ∣∣ j
m

∣∣ ≤ 0.5,

= 2
(
1−

∣∣ j
m

∣∣)3 , 0.5 ≤
∣∣ j
m

∣∣ ≤ 1.0,

= 0,
∣∣ j
m

∣∣ > 1.

(17.10)

We have thatK(−j) = K(j), so that the sign of j does not matter (cos(x) = cos(−x)).
The r̂js are based on fewer observations as j increases. The window function attaches
decreasing weights to the autocorrelations, with zero weight for j > m. The parameter
m is called the lag truncation parameter. In OxMetrics, this is taken to be the same as
the chosen length of the correlogram. For example, selecting s = 12 (the with length

setting in the dialog) results in m = 12. The larger m, the less smooth the spectrum
becomes, but the lower the bias. The spectrum is evaluated at 128 points between 0 and
π. For more information see Priestley (1981) and Granger and Newbold (1986).
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17.10 Histogram, estimated density and distribution

Given a data set {xt} = (x1 . . . xT ) which are observations on a random variable
X . The range of {xt} is divided into N intervals of length h with h defined below.
Then the proportion of xt in each interval constitutes the histogram; the sum of the
proportions is unity on the scaling that is used. The density can be estimated as a
smoothed function of the histogram using a normal or Gaussian kernel. This can then be
summed (‘integrated’) to obtain the estimated cumulative distribution function (CDF).

Denote the actual density of X at x by fx(x). A non-parametric estimate of the
density is obtained from the sample by:

f̂x (x) =
1

Th

T∑
t=1

K

(
x− xt
h

)
, (17.11)

where h is the window width or smoothing parameter, and K (·) is a kernel such that:∫ ∞

−∞
K (z) dz = 1.

PcGive sets:
h = 1.06σ̂x/T

0.2

as a default, and uses the standard normal density for K (·):

K

(
x− xt
h

)
=

1√
2π

exp

[
− 1

2

(
x− xt
h

)2
]
. (17.12)

f̂x(x) is usually calculated for 128 values of x, using a fast Fourier transform. An
excellent reference on density function estimation is Silverman (1986).

17.11 QQ plot
The variable in a QQ plot would normally hold critical values which are hypothesized
to come from a certain distribution. The QQ plot function then draws a cross plot of
these observed values (sorted), against the theoretical quantiles. The 45o line is drawn
for reference (the closer the cross plot to this line, the better the match).

The normal QQ plot includes the pointwise asymptotic 95% standard error bands,
as derived in Engler and Nielsen (2009)) for residuals of regression models (possibly
autoregressive) with an intercept.



Chapter 18

Model Estimation Statistics

Single equation estimation is allowed by:

OLS-CS ordinary least squares (cross-section modelling)
IVE-CS instrumental variables estimation (cross-section modelling)
OLS ordinary least squares
IVE instrumental variables estimation
NLS non-linear least squares
ML maximum likelihood estimation

Once a model has been specified, a sample period selected, and an estimation
method chosen, the equation can be estimated. OLS-CS/IVE-CS and OLS/IVE only
differ in the way the sample period is selected. In the first, cross section, case, all
observations with missing values are omitted. Therefore, ‘holes’ in the database are
simply skipped. In cross-section mode it is also possible to specify a variable Sel by
which to select the sample. In that case, observations where Sel has a 0 or missing
values are omitted from the estimation sample (but, if data is available, included in the
prediction set). In dynamic regression, the observations must be consecutive in time,
and the maximum available sample is the leading contiguous sample. The following
table illustrates the default sample when regressing y on a constant:

y Sel cross section dynamic
default using Sel

1980 . 0

1981 . 0

1982 4 0 ∗ ∗
1983 7 1 ∗ ∗ ∗
1984 9 1 ∗ ∗ ∗
1985 10 1 ∗ ∗ ∗
1986 . 0

1987 12 0 ∗

For ease of notation, the sample period is denoted t = 1, . . . , T +H , after allowing

258
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for any lagged variables created where H is the forecast horizon. The data used for
estimation are X = (x1 . . .xT ). TheH retained observations XH = (xT+1 . . .xT+H)

are used for static (1-step) forecasting and evaluating parameter constancy.
This chapter discusses the statistics reported by PcGive following model estima-

tion. The next chapter presents the wide range of evaluation tools available following
successful estimation. Sections marked with * denote information that can be shown
or omitted on request. In the remainder there is no distinction between OLS/IVE and
OLS-CS/IVE-CS.

18.1 Recursive estimation: RLS/RIVE/RNLS/RML

In most cases, recursive estimation is available:
RLS recursive OLS
RIVE recursive IVE
RNLS recursive NLS
RML recursive ML

Recursive OLS and IV estimation methods are initialized by a direct estimation
over t = 1, . . . ,M − 1, followed by recursive estimation over t =M, . . . , T . RLS and
RIVE update inverse moment matrices (RLS formulae were given in §14.7.9). This is
inherently somewhat numerically unstable, but, because it is primarily a graphical tool,
this is not so important.

Recursive estimation of non-linear models is achieved by the brute-force method:
first estimate for the full sample, then shrink the sample by one observation at a time.
At each step the estimated parameters of the previous step are used as starting values,
resulting in a considerably faster algorithm.

The final estimation results are always based on direct full-sample estimation, so
unaffected whether recursive or non-recursive estimation is used. The recursive output
can be plotted from the recursive graphics dialog.

18.2 OLS estimation

The algebra of OLS estimation is well established from previous chapters, see, for
example, §14.7 and §13.6. The model is:

yt = β
′xt + ut, with ut ∼ IN

(
0, σ2

)
t = 1, . . . , T,

or more compactly:

y = Xβ + u, with u ∼ NT

(
0, σ2I

)
. (18.1)

The vectors β and xt are k × 1. The OLS estimates of β are:

β̂ = (X′X)
−1

X′y, (18.2)
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with residuals
ût = yt − ŷt = yt − x′

tβ̂, t = 1, . . . , T, (18.3)

and estimated residual variance

σ̂2
u =

1

T − k

T∑
t=1

û2t . (18.4)

Forecast statistics are provided for the H retained observations (only if H ̸= 0).
For OLS, these are comprehensive 1-step ahead forecasts and tests, described below.

The estimation output is presented in columnar format, where each row lists infor-
mation pertaining to each variable (its coefficient, standard error, t-value, etc.). Op-
tionally, the estimation results can be printed in equation format,, which is of the form
coefficient × variable with standard errors in parentheses underneath.

18.2.1 The estimated regression equation

The first column of these results records the names of the variables and the second,
the estimated regression coefficients β̂ = (X′X)

−1
X′y. PcGive does actually not

use this expression to estimate β̂. Instead it uses the QR decomposition with partial
pivoting, which analytically gives the same result, but in practice is a bit more reliable
(i.e. numerically more stable). The QR decomposition of X is X = QR, where Q is
T × T and orthogonal (that is, Q′Q = I), and R is T × k and upper triangular. Then
X′X = R′R.

The following five columns give further information about each of the magnitudes
described below in §18.2.2 to §18.2.11.

18.2.2 Standard errors of the regression coefficients

These are obtained from the variance-covariance matrix:

SE
[
β̂i

]
=

√
̂
V
[
β̂i

]
= σ̂u

√
dii (18.5)

where dii is the ith diagonal element of (X′X)
−1 and σ̂u is the standard error of the

regression, defined in (18.4).

18.2.3 t-values and t-probability

These statistics are conventionally calculated to determine whether individual coeffi-
cients are significantly different from zero:

t−value = β̂i

SE
[
β̂i

] (18.6)
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where the null hypothesis H0 is βi = 0. The null hypothesis is rejected if the probability
of getting a t-value at least as large is less than 5% (or any other chosen significance
level). This probability is given as:

t−prob = 1− Prob (|τ | ≤ |t−value|) (18.7)

in which τ has a Student t-distribution with T − k degrees of freedom. The t-
probabilities do not appear when all other options are switched on.

When H0 is true (and the model is otherwise correctly specified in a stationary
process), a Student t-distribution is used since the sample size is often small, and we
only have an estimate of the parameter’s standard error: however, as the sample size
increases, τ tends to a standard normal distribution under H0. Large t-values reject H0;
but, in many situations, H0 may be of little interest to test. Also, selecting variables in a
model according to their t-values implies that the usual (Neyman–Pearson) justification
for testing is not valid (see, for example, Judge, Griffiths, Hill, Lütkepohl, and Lee,
1985).

18.2.4 Squared partial correlations

The final column lists the squared partial correlations under the header Part.R^2. The
jth entry in this column records the correlation of the jth explanatory variable with
the dependent variable, given the other k − 1 variables, see §14.7.7. Adding further
explanatory variables to the model may either increase or lower the squared partial
correlation, and the former may occur even if the added variables are correlated with the
already included variables. If the squared partial correlations fall on adding a variable,
then that is suggestive of collinearity for the given equation parametrization: that is, the
new variable is a substitute for, rather than a complement to, those already included.

Beneath the columnar presentation an array of summary statistics is also provided
as follows:

18.2.5 Equation standard error (̂σ)

The residual variance is defined as:

σ̂2
u =

1

T − k

T∑
t=1

û2t , (18.8)

where the residuals are defined as:

ût = yt − ŷt = yt − x′
tβ̂, t = 1, . . . , T. (18.9)

The equation standard error (ESE) is the square root of (18.10):

σ̂u =

[
1

T − k

T∑
t=1

û2t

]1/2
. (18.10)

This is labelled sigma in the regression output.
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18.2.6 Residual sum of squares (RSS)

RSS =

T∑
t=1

û2t . (18.11)

18.2.7 R2: squared multiple correlation coefficient

The variation in the dependent variable, or the total sum of squares (TSS), can be
broken up into two parts: the explained sum of squares (ESS) and the residual sum of
squares (RSS). In symbols, TSS = ESS +RSS, or:

T∑
t=1

(yt − ȳ)2 =

T∑
t=1

(ŷt − ȳ)2 +
T∑

t=1

û2t ,

and hence:

R2 =
ESS

TSS
=

∑T
t=1 (ŷt − ȳ)

2∑T
t=1 (yt − ȳ)

2
= 1−

∑T
t=1 û

2
t∑T

t=1 (yt − ȳ)
2
= 1− RSS

TSS
,

assuming a constant is included (also see §14.7.6). Thus, R2 is the proportion of the
variance of the dependent variable which is explained by the variables in the regression.
By adding more variables to a regression, R2 will never decrease, and it may increase
even if nonsense variables are added. Hence, R2 may be misleading. Also, R2 is depen-
dent on the choice of transformation of the dependent variable (for example, y versus
∆y) – as is the F-statistic below. The equation standard error, σ̂u, however, provides a
better comparative statistic because it is adjusted by the degrees of freedom. Generally,
σ̂ can be standardized as a percentage of the mean of the original level of the depen-
dent variable (except if the initial mean is zero) for comparisons across specifications.
Since many economic magnitudes are inherently positive, that standardization is often
feasible. If y is in logs, 100σ̂ is the percentage standard error.

18.2.8 F-statistic

The formula was already given in (14.94):

ηβ =
R2/ (k − 1)

(1− R2) / (T − k)
∼ F (k − 1, T − k) (18.12)

Here, the null hypothesis is that the population R2 is zero, or that all the regression
coefficients are zero (excluding the intercept). The value for the F-statistic is followed
by its probability value between square brackets.

18.2.9 R̄2: Adjusted R2

The adjusted R2 incorporates a penalty for the number of regressors:

R̄2 = R2 − k − 1

T − k
(
1− R2

)
,
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assuming a constant is included. The adjusted R-squared can go down when the number
of variables increases. Nonetheless, there is no rationale to use it as a model selection
criterion.

An alternative way to express it uses (18.8) and (18.13):

R̄2 = 1− σ̂2
u

σ̂2
y

,

so maximizing R̄2 corresponds to minimizing σ̂2
u.

R̄2 is not reported if the regression does not have an intercept.

18.2.10 Log-likelihood

The log-likelihood for model (18.1) is:

ℓ(β, σ2|y,X) = −T
2 log 2π − T

2 log σ2 − 1
2

u′u

σ2
.

Next, we can concentrate σ2 out of the log-likelihood to obtain:

ℓc(β|y,X) = Kc − T
2 log

û′û

T
,

where
Kc = −T

2 (1 + log 2π).

The reported log-likelihood includes the constant, so corresponds to:

ℓc(β|y,X) = Kc − T
2 log

RSS

T
.

18.2.11 Mean and standard error of dependent variable

The final entries list the number of observations used in the regressor (so after allowing
for lags), and the number of estimated parameters. This is followed by the mean and
standard error of the dependent variable:

ȳ =
1

T

T∑
t=1

yt, σ̂y =

[
1

T − 1

T∑
t=1

(yt − ȳ)2
]1/2

. (18.13)

Note that we use T − 1 in the denominator of σ̂2
y , so this is what would be reported

as the equation standard error (18.10) when regressing the dependent variable on just a
constant.1

1The maximum likelihood estimate for a linear model gives 1/T , while regression on a con-
stant using OLS produces an unbiased estimate of the variance using 1/(T − 1).
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18.2.12 *Information criteria

The four statistics reported are the Schwarz criterion (SC), the Hannan–Quinn (HQ)
criterion, the Final Prediction Error (FPE), and the Akaike criterion (AIC). Here:

SC = log σ̃2 + k (log T ) /T,

HQ = log σ̃2 + 2k (log (log T )) /T,

FPE = (T + k) σ̃2/ (T − k) ,
AIC = log σ̃2 + 2k/T.

(18.14)

using the maximum likelihood estimate of σ2:

σ̃2 =
T − k
T

σ̂2 =
1

T

T∑
t=1

û2t .

For a discussion of the use of these and related scalar measures to choose between
alternative models in a class, see Judge, Griffiths, Hill, Lütkepohl, and Lee (1985),
§13.10.2 and §19.9 below.

18.2.13 *Heteroscedastic-consistent standard errors (HCSEs)

These provide consistent estimates of the regression coefficients’ standard errors even
if the residuals are heteroscedastic in an unknown way, see (13.33). Large differ-
ences between the corresponding values in §18.2.2 and §18.2.13 are indicative of the
presence of heteroscedasticity, in which case §18.2.13 provides the more useful mea-
sure of the standard errors (see White, 1980). PcGive contains two methods of com-
puting heteroscedastic-consistent standard errors: as described in White (1980) (la-
belled HCSE), or the Jack-knife estimator from MacKinnon and White (1985) (labelled
JHCSE; for which the code was initially provided by James MacKinnon).

The heteroscedasticity and autocorrelation consistent standard errors are reported in
the column labelled HACSE. This follows Newey and West (1987), also see Andrews
(1991).

18.2.14 *R2 relative to difference and seasonals

The R2 is preceded by the seasonal means s̄ of the first difference of the dependent
variable (∆y for annual data, four quarterly means for quarterly data, twelve monthly
means for monthly data etc.).

The R2 relative to difference and seasonals is a measure of the goodness of fit rel-
ative to

∑
(∆yt − s̄)2 instead of

∑
(yt − ȳ)2 in the denominator of R2 (keeping

∑
û2t

in the numerator), where s̄ denotes the relevant seasonal mean. Despite its label, such
a measure can be negative: if it is, the fitted model does less well than a regression of
∆yt on seasonal dummies.
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18.2.15 *Correlation matrix of regressors

This reports the sample means and sample standard deviations of the selected variables:

x̄ =
1

T

T∑
t=1

xt, s =

√√√√ 1

T − 1

T∑
t=1

(xt − x̄)2.

The correlation matrix of the selected variables is reported as a lower-triangular matrix
with the diagonal equal to one. Each cell records the simple correlation between the
two relevant variables. The calculation of the correlation coefficient rxy between x and
y is:

rxy =

∑T
t=1 (xt − x̄) (yt − ȳ)√∑T

t=1 (xt − x̄)
2∑T

t=1 (yt − ȳ)
2
. (18.15)

18.2.16 *Covariance matrix of estimated parameters

The matrix of the estimated parameters’ variances is reported as lower triangular. Along
the diagonal, we have the variance of each estimated coefficient, and off the diagonal,
the covariances. The k × k variance matrix of β̂ is estimated by:

̂
V
[
β̂
]
= σ̂2 (X′X)

−1
, (18.16)

where σ̂2 is the full-sample equation error variance. The variance-covariance matrix is
only shown when requested, in which case it is reported before the equation output.

The remaining statistics only appear if observations were withheld for forecasting
purposes:

18.2.17 1-step (ex post) forecast analysis

Following estimation over t = 1, . . . , T , 1-step forecasts (or static forecasts) are given
by:2

ŷt = x′
tβ̂, t = T + 1, . . . , T +H, (18.17)

which requires the observations X′
H = (xT+1, . . . ,xT+H). The 1-step forecast error

is the mistake made each period:

et = yt − x′
tβ̂, t = T + 1, . . . , T +H, (18.18)

which can be written as:

et = x′
tβ + ut − x′

tβ̂ = x′
t

(
β − β̂

)
+ ut. (18.19)

2Dynamic forecasts are needed when the xs are also predicted for the forecast period. Dy-
namic forecasts are also implemented, see §19.4, but the econometrics is discussed in Volume II
(Doornik and Hendry, 2013b).
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Assuming that E[β̂] = β, then E[et] = 0 and:

V [et] = E
[
e2t
]
= E

[(
x′
t

(
β − β̂

))2
+ u2t

]
= σ2

ux
′
t (X

′X)
−1

xt + σ2
u. (18.20)

This corresponds to the results given for the innovations in recursive estimation, see
§14.7.9. The whole vector of forecast errors is e = (eT+1, . . . , eT+H)

′. V[e] is derived
in a similar way:

V [e] = σ2IH +XHV
[
β̂
]
X′

H = σ2
u

(
IH +XH (X′X)

−1
X′

H

)
. (18.21)

Estimated variances are obtained after replacing σ2
u by σ̂2

u.
The columns respectively report the date for which the forecast is made, the realized

outcome (yt), the forecast (ŷt), the forecast error (et = yt − ŷt), the standard error of
the 1-step forecast (SE (et) =

√̂
V [et]), and a t-value (that is, the standardized forecast

error et/SE (et)).

18.2.18 Forecast test

A χ2 statistic follows the 1-step analysis, comparing within and post-sample residual
variances. Neither this statistic nor η3 below measure absolute forecast accuracy. The
statistic is calculated as follows:

ξ1 =

T+H∑
t=T+1

e2t
σ̂2
u

ãpp χ
2 (H) on H0. (18.22)

The null hypothesis is ‘no structural change in any parameter between the sample and
the forecast periods’ (denoted 1 and 2 respectively), H0: β1 = β2; σ2

1 = σ2
2 . A

rejection of the null hypothesis of constancy by ξ3 below implies a rejection of the
model used over the sample period – so that is a model specification test – whereas the
use of ξ1 is more as a measure of numerical parameter constancy, and it should not be
used as a model-selection device (see Kiviet, 1986). However, persistently large values
for this statistic imply that the equation under study will not provide very accurate ex
ante predictions, even one step ahead. An approximate F-equivalent is given by:

η1 =
1

H
ξ1 ãpp F (H,T − k) on H0. (18.23)

A second statistic takes parameter uncertainty into account, taking the denominator
from (18.20):

ξ2 =

T+H∑
t=T+1

e2t

σ̂2
u(1 + x′

t (X
′X)

−1
xt)

ãpp χ
2 (H) on H0. (18.24)

This test is not reported in single-equation modelling, but individual terms of the sum-
mation can be plotted in the graphical analysis.
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18.2.19 Chow test

This is the main test of parameter constancy and has the form:

η3 =
(RSST+H −RSST ) /H

RSST /(T − k) ãpp F (H,T − k) on H0 (18.25)

where H0 is as for ξ1. For fixed regressors, the Chow (1960) test is exactly distributed
as an F, but is only approximately (or asymptotically) so in dynamic models.

Alternatively expressed, the Chow test is:

η3 = H−1ξ3 = H−1e′
(
V̂ [e]

)−1

e. (18.26)

We can now see the relation between ξ3 and ξ1: the latter uses V̂ [e] = σ̂2
uI, obtained

by dropping the (asymptotically negligible) term V[β̂] in (18.21). In small samples, the
dropped term is often not negligible, so ξ1 should not be taken as a test. The numerical
value of ξ1 always exceeds that of ξ3: the difference indicates the relative increase in
prediction uncertainty arising from estimating, rather than knowing, the parameters.

PcGive computes the Chow test efficiently, by noting that:

σ̂2
ue

′
(
V̂ [e]

)−1

e = e′
(
IH −XH (X′X+X′

HXH)
−1

X′
H

)
e. (18.27)

18.2.20 t-test for zero forecast innovation mean (RLS only)

The recursive formulae from §14.7.9 are applicable over the sample T +1, . . . , T +H ,
and under the null of correct specification and H0 of ξ1 above, then the standardized
innovations {νt/(ωt)

1/2} in (14.111) are distributed as IN(0, σ2
u). Thus:

√
H

1
H

∑T+H
t=T+1 νt/(ωt)

1/2

σ̂u
∼ t (H − 1) on H0. (18.28)

This tests for a different facet of forecast inaccuracy in which the forecast errors have a
small but systematic bias. This test is the same as an endpoint CUSUM test of recursive
residuals, but using only the forecast sample period (see Harvey and Collier, 1977).

18.3 IV estimation
Instrumental variables estimation was considered in §13.8. Here we write the model as:

yt = β
′
0y

∗
t + β

′
1wt + ϵt, (18.29)

in which we have n− 1 endogenous variables y∗
t and q1 non-modelled variables wt on

the right-hand side (the latter may include lagged endogenous variables). We assume
that we have q2 additional instruments, labelled w∗

t . Write yt = (yt : y∗′
t )

′ for the
n×1 vector of endogenous variables. Let zt denote the set of all instrumental variables
(non-endogenous included regressors, plus additional instruments): zt = (w′

t : w
∗′
t )

′,
which is a vector of length q = q1 + q2.
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18.3.1 *Reduced form estimates

The reduced form (RF) estimates are only printed on request. If Z′ = (z1 . . . zT ), and
yt denotes all the n endogenous variables including yt at t with Y′ = (y1, . . . ,yT ),
then the RF estimates are:

Π̂′ = (Z′Z)
−1

Z′Y, (18.30)

which is q × n. The elements of Π̂′ relevant to each endogenous variable are written:

πi = (Z′Z)
−1

Z′Yi, i = 1, . . . , n, (18.31)

with Y′
i = (yi1, . . . , yiT ) the vector of observations on the ith endogenous variable.

Standard errors etc. all follow as for OLS above (using Z, Yi for X,y in the relevant
equations there).

18.3.2 Structural estimates

Generalized instrumental variables estimates for the k = n − 1 + q1 coefficients of
interest β = (β′

0 : β′
1)

′ are:

β̃ =
(
X′Z (Z′Z)

−1
Z′X

)−1

X′Z (Z′Z)
−1

Z′y, (18.32)

using xt = (y∗′
t : w′

t)
′, X′ = (x1 . . .xT ), y = (y1 . . . yT )

′, which is the left-hand side
of (18.29), and Z is as in (18.30). This allows for the case of more instruments than
explanatory variables (q > k), and requires rank(X′Z) = k and rank(Z′Z) = q. If
q = k the equation simplifies to that of (13.36):

β̃ = (Z′X)
−1

Z′y. (18.33)

As for OLS, PcGive does not use expression (18.32) directly, but instead uses the QR
decomposition for numerically more stable computation. The error variance is given by

σ̃ϵ =
ϵ̃′ϵ̃

T − k
, where ϵ̃ = y −Xβ̃. (18.34)

The variance of β̃ is estimated by:

̂
V
[
β̃
]
= σ̃2

ϵ

(
X′Z (Z′Z)

−1
Z′X

)−1

. (18.35)

Again the output is closely related to that reported for least squares except that the
columns for HCSE, partial r2 and instability statistics are omitted. However, RSS,
σ̃ and DW are recorded, as is the reduced form σ̂ (from regressing yt on zt, already
reported with the RF equation for yt). Additional statistics reported are :
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18.3.3 Specification χ2

This tests for the validity of the choice of the instrumental variables as discussed by
Sargan (1964). It is asymptotically distributed as χ2(q2−n+1) when the q2−n+1 over-
identifying instruments are independent of the equation error. It is also interpretable as
a test of whether the restricted reduced form (RRF) of the structural model (yt on xt

plus xt on zt) parsimoniously encompasses the unrestricted reduced form (URF: yt on
zt directly):

π̂′ (Z′Z) π̂ − β̃′
(
X′Z (Z′Z)

−1
Z′X

)
β̃

ϵ̃′ϵ̃/T ãpp χ2(q2 − n+ 1), (18.36)

with π̂ = (Z′Z)
−1

Z′y being the unrestricted reduced form estimates.

18.3.4 Testing β = 0

Reported is the χ2 test of β = 0 (other than the intercept) which has a crude correspon-
dence to the earlier F-test. On H0: β = 0, the reported statistic behaves asymptotically
as a χ2 (k − 1). First define

ξβ = β̃′
(
X′Z (Z′Z)

−1
Z′X

)
β̃. (18.37)

Then ξβ/σ̃ϵ ãpp χ2(k) would test whether all k coefficients are zero (cf. equation
(14.58)). To keep the intercept separate, we compute:

ξβ − T ȳ2

σ̃2
ϵ

ãpp χ2(k − 1). (18.38)

This amounts to using the formula for β̃ (eq. (18.32)) in ξβ with y − ȳι instead of y.

18.3.5 Forecast test

A forecast test is provided if H observations are retained for forecasting. For IVE
there are endogenous regressor variables: the only interesting issue is that of parameter
constancy and correspondingly the output is merely ξ1 of (18.22) using σ̃ϵ and:

et = yt − x′
tβ̃, t = T + 1, . . . , T +H. (18.39)

Dynamic forecasts (which require forecasts of the successive xT+1, . . . ,xT+H)

could be obtained from multiple equation dynamic modelling, where the system as a
whole is analyzed.

18.4 Non-linear modelling

18.4.1 Non-linear least squares (NLS) estimation

The non-linear regression model is written as

yt = f (xt,θ) + ut, t = 1, . . . , T, with ut ∼ IN
(
0, σ2

u

)
. (18.40)
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We take θ to be a k × 1 vector. For example:

yt = θ0 + θ1x
θ2
t + θ3z

1−θ2
t + ut.

Note that for fixed θ2 this last model becomes linear; for example, for θ2 = 1
2 :

yt = θ0 + θ1x
∗
t + θ3z

∗
t + ut, x∗t =

√
xt, z

∗
t =
√
zt,

which is linear in the transformed variables x∗t , z
∗
t . As for OLS, estimation proceeds

by minimizing the sum of squared residuals:

θ̂ = argminθ

T∑
t=1

u2t = argminθ

T∑
t=1

(yt − f (xt,θ))
2
. (18.41)

In linear models, this problem has an explicit solution; for non-linear models the mini-
mum has to be found using iterative optimization methods.

Instead of minimizing the sum of squares, PcGive maximizes the sum of squares
divided by −T :

θ̂ = argmaxθ g (θ | yt,xt) = argmaxθ

{
− 1

T

T∑
t=1

u2t

}
. (18.42)

An iterative procedure is used to locate the maximum:

θi+1 = θi + siQ (θi)
−1

q (θi) , (18.43)

with q (·) the derivatives of g(·) with respect to θj (this is determined numerically),
and Q (·)−1 a symmetric, positive definite matrix (determined by the BFGS method
after some initial Gauss-Newton steps). Practical details of the algorithm are provided
in §18.4.3; Volume II gives a more thorough discussion of the subject of numerical
optimization. Before using NLS you are advised to study the examples given in the
tutorial Chapter 10, to learn about the potential problems.

Output is as for OLS, except for the instability tests and HCSEs which are not
computed. The variance of the estimated coefficients is determined numerically, other
statistics follow directly, for example:

σ̂2
u =

1

T − k

T∑
t=1

û2t , with ût = yt − f
(
xt, θ̂

)
. (18.44)

Forecasts are computed and graphed, but the only statistic reported is the ξ1 test of
(18.22), using 1-step forecast errors:

et = yt − f
(
xt, θ̂

)
, t = T + 1, . . . , T +H. (18.45)
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18.4.2 Maximum likelihood (ML) estimation

Maximum likelihood estimation was established in Chapter 14. We saw in (14.28) that
for an independent sample of T observations and k parameters θ:

θ̂ = argmaxθ ℓ (θ | X) = argmaxθ

T∑
t=1

ℓ (θ | xt) . (18.46)

This type of model can be estimated with PcGive, which solves the problem:

max
θ

T∑
t=1

ℓ (θ | xt) . (18.47)

Models falling in this class are, for example, binary logit and probit, ARCH, GARCH,
Tobit, Poisson regression. Extensive examples are given in tutorial Chapter 10. As an
example, consider the linear regression model. PcGive gives three ways of solving this:
1. direct estimation (OLS);
2. numerical minimization of the residual sum of squares (NLS);
3. numerical maximization of the likelihood function (ML).
Clearly, the first method is to be preferred when available.

Estimation of (18.47) uses the same technique as NLS. The output is more concise,
consisting of coefficients, standard errors (based on the numerical second derivative),
t-values, t-probabilities, and ‘loglik’ which is

∑T
t=1 ℓ(θ̂|xt). Forecasts are computed

and graphed, but no statistics are reported.

18.4.3 Practical details

Non-linear model are formulated in algebra code. NLS requires the definition of a
variable called actual, and one called fitted. It uses these to maximize minus the
residual sum of squares divided by T:

− 1

T

T∑
t=1

(actualt − fittedt)
2
.

An example for NLS is:
actual = CONS;
fitted = &0 + &1 * INC + &2 * lag(INC,1);
&0 = 400;
&1 = 0.8;
&2 = 0.2;

This is just a linear model, and much more efficiently done using the normal options.
Models can be estimated by maximum likelihood if they can be written as a sum

over the observations (note that the previous concentrated log-likehood cannot be writ-
ten that way!). An additional algebra line is required, to define a variable called loglik.
PcGive maximizes:

T∑
t=1

loglikt.
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Consider, for example, a binary logit model:
actual = vaso;
xbeta = &0 + &1 * Lrate + &2 * Lvolume;
fitted = 1 / (1 + exp(-xbeta));
loglik = actual * log(fitted) + (1-actual) * log(1-fitted);
&0 = 0.74;
&1 = 1.3;
&2 = 2.3;

Here actual and fitted are not really that, but these variables define what is being
graphed in the graphic analysis.

Note that algebra is a vector language without temporary variables, restricting the
class of models that can be estimated. Non-linear models are not stored for recall and
progress reports.

After correct model specification, the method is automatically set to Non-linear

model (using ML if loglik is defined, NLS/RNLS otherwise); in addition, the follow-
ing information needs to be specified:
1. Estimation sample.
2. The number of forecasts; enter the number of observations you wish to withhold for

forecasting.
3. Whether to use recursive estimation, and if so, the number of observations you wish

to use for initialization.

NLS and ML estimation (and their recursive variants RNLS and RML) require nu-
merical optimization to maximize the likelihood log L (ϕ (θ)) = ℓ (ϕ (θ)) as a non-
linear function of θ. PcGive maximization algorithms are based on a Newton scheme:

θi+1 = θi + siQ
−1
i qi (18.48)

with
• θi parameter value at iteration i;
• si step length, normally unity;
• Qi symmetric positive-definite matrix (at iteration i);
• qi first derivative of the log-likelihood (at iteration i) (the score vector);
• δi = θi − θi−1 is the change in the parameters;

PcGive uses the quasi-Newton method developed by Broyden, Fletcher, Goldfarb,
Shanno (BFGS) to update K = Q−1 directly. It uses numerical derivatives to com-
pute ∂ℓ (ϕ (θ)) /∂θi. However, for NLS, PcGive will try Gauss-Newton before starting
BFGS. In this hybrid method, Gauss-Newton is used while the relative progress in the
function value is 20%, then the program switches to BFGS.

Starting values must be supplied. The starting value for K consistes of 0s off-
diagonal. The diagonal is the minimum of one and the inverse of the corresponding
diagonal element in the matrix consisting of the sums of the outer-products of the gra-
dient at the parameter starting values (numerically evaluated).

RNLS works as follows: starting values for θ and K for the first estimation (T −
1 observations) are the full sample values (T observations); then the sample size is
reduced by one observation; the previous values at convergence are used to start with.
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Owing to numerical problems it is possible (especially close to the maximum) that
the calculated δi does not yield a higher likelihood. Then an si ∈ [0, 1] yielding a
higher function value is determined by a line search. Theoretically, since the direction
is upward, such an si should exist; however, numerically it might be impossible to find
one. When using BFGS with numerical derivatives, it often pays to scale the data so
that the initial gradients are of the same order of magnitude.

The convergence decision is based on two tests. The first uses likelihood elasticities
(∂ℓ/∂ log θ):

|qi,jθi,j | ≤ ϵ for all j when θi,j ̸= 0,

|qi,j | ≤ ϵ for all j with θi,j = 0.
(18.49)

The second is based on the one-step-ahead relative change in the parameter values:

|δi+1,j | ≤ 10ϵ |θi,j | for all j with θi,j ̸= 0,

|δi+1,j | ≤ 10ϵ for all j when θi,j = 0.
(18.50)

The status of the iterative process is given by the following messages:
1. No convergence!
2. Aborted: no convergence!
3. Function evaluation failed: no convergence!
4. Maximum number of iterations reached: no convergence!
5. Failed to improve in line search: no convergence!

The step length si has become too small. The convergence test (18.49) was not
passed, using tolerance ϵ = ϵ2.

6. Failed to improve in line search: weak convergence
The step length si has become too small. The convergence test (18.49) was passed,
using tolerance ϵ = ϵ2.

7. Strong convergence
Both convergence tests (18.49) and (18.50) were passed, using tolerance ϵ = ϵ1.

The chosen default values for the tolerances are:

ϵ1 = 10−4, ϵ2 = 5× 10−3. (18.51)

You can:
1. set the initial values of the parameters to zero or the previous values;
2. set the maximum number of iterations;
3. write iteration output;
4. change the convergence tolerances ϵ1 and ϵ2. Care must be exercised with this:

the defaults are ‘fine-tuned’; some selections merely show the vital role of sensible
choices!

NOTE 1: non-linear estimation can only continue after convergence.
NOTE 2: Restarting the optimization process leads to a Hessian reset.



Chapter 19

Model Evaluation Statistics

19.1 Graphic analysis
Graphic analysis focuses on graphical inspection of individual equations. Let yt, ŷt
denote respectively the actual (that is, observed) values and the fitted values of the
selected equation, with residuals ût = yt− ŷt, t = 1, . . . , T . When H observations are
retained for forecasting, then ŷT+1, . . . , ŷT+H are the 1-step forecasts. NLS/RNLS/ML
use the variables labelled ‘actual’ and ‘fitted’ for yt, ŷt.

Fourteen different graphs are available:
1. Actual and fitted values

(yt, ŷt) over t. This is a graph showing the fitted (ŷt) and actual values (yt) of the
dependent variable over time, including the forecast period.

2. Cross-plot of actual and fitted
ŷt against yt, also including the forecast period.

3. Residuals (scaled)
(ût/σ̂) over t, where σ̂2 = (T − k)−1RSS is the full-sample equation error vari-
ance. As indicated, this graph shows the scaled residuals given by ût/σ̂ over time.

4. Forecasts and outcomes
The 1-step forecasts can be plotted in a graph over time: yt and ŷt are shown with
error bars of ±2SE (et) centered on ŷt (that is, an approximate 95% confidence
interval for the 1-step forecast); et are the forecast errors.

5. Residual density and histogram
Plots the histogram of the standardized residuals ût/

√
(T−1RSS), t = 1, . . . , T ,

the estimated density f̂u(·) and a normal distribution with the same mean and vari-
ance (more details are in §17.10).

6. Residual autocorrelations (ACF)
This plots the residual autocorrelations using ût as the xt variable in (19.13).

7. Residual partial autocorrelations (PACF)
This plots the partial autocorrrelation function (see §12.7 and §17.6)–the same
graph is used if the ACF is selected.

274
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8. Forecasts Chow tests
If available, the individual Chow χ2(1) tests (see Equation 18.24) are be plotted.

9. Residuals (unscaled)
(ût) over t;

10. Residual spectrum
This plots the estimated spectral density (see §17.9) using ût as the xt variable.

11. Residual QQ plot against N(0,1)
Shows a QQ plot of the residuals, see §17.11.

12. Residual density
The non-parametrically estimated density f̂u(·) of the standardized residuals
ût/
√
(T−1RSS), t = 1, . . . , T is graphed using the settings described in the

OxMetrics book.
13. Histogram

This plots the histogram of the standardized residuals ût/
√
(T−1RSS), t =

1, . . . , T–the same graph is used if the density is selected.
14. Residual distribution (normal quantiles)

Plots the distribution based on the non-parametrically estimated density.

The residuals can be saved to the database for further inspection.

19.2 Recursive graphics (RLS/RIVE/RNLS/RML)

Recursive methods estimate the model at each t for t = M − 1, . . . , T . The output
generated by the recursive procedures is most easily studied graphically, possibly using
the facility to view multiple graphs together on screen. The dialog has a facility to write
the output to the editor, instead of graphing it. The recursive estimation aims to throw
light on the relative future information aspect (that is, parameter constancy).

Let β̂t denote the k parameters estimated from a sample of size t, and yj − x′
jβ̂t

the residuals at time j evaluated at the parameter estimates based on the sample 1, . . . , t
(for RNLS the residuals are yj − f(xj , β̂t)).

We now consider the generated output:

1. Beta coefficient ±2 Standard Errors
The graph shows β̂it ± 2SE(β̂it) for each selected coefficient i (i = 1, . . . , k) over
t =M, . . . , T.

2. Beta t-value
β̂it/SE(β̂it) for each selected coefficient i (i = 1, . . . , k) over t =M, . . . , T.

3. Residual sum of squares
The residual sum of squares at each t is RSSt =

∑t
j=1(yj − x′

jβ̂t)
2 for t =

M, . . . , T .
4. 1-Step residuals ±2σ̂t

The 1-step residuals yt − x′
tβ̂t are shown bordered by 0 ± 2σ̂t over M, . . . , T .

Points outside the 2 standard-error region are either outliers or are associated with
coefficient changes.
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5. Standardized innovations
The standardized innovations (or standardized recursive residuals) for RLS are:
νt = (yt − x′

tβ̂t−1)/(ωt)
1/2 where ωt = 1 + x′

t

(
X′

t−1Xt−1

)−1
xt for t =

M, . . . , T.

As pointed out in §14.7.9, σ2ωt is the 1-step forecast error variance of (18.20), and
β̂M−1 are the coefficient estimates from the initializing OLS estimation.

6. 1-Step Chow tests
1-step forecast tests are F (1, t− k − 1) under the null of constant parameters, for
t =M, . . . , T . A typical statistic is calculated as:

(RSSt −RSSt−1) (t− k − 1)

RSSt−1
=
ν2t /ωt

σ̂2
t−1

. (19.1)

Normality of yt is needed for this statistic to be distributed as an F.
7. Break-point Chow tests (Ndn Chow)

Break-point F-tests are F (T − t+ 1, t− k − 1) for t = M, . . . , T . These are,
therefore, sequences of Chow tests and are also called N ↓ because the number
of forecasts goes from N = T −M + 1 to 1. When the forecast period exceeds
the estimation period, this test is not necessarily optimal relative to the covariance
test based on fitting the model separately to the split samples. A typical statistic is
calculated as:

(RSST −RSSt−1) (t− k − 1)

RSSt−1(T − t+ 1)
. =

1
T−t+1

∑T
m=t ν

2
m/ωm

σ̂2
t−1

. (19.2)

This test is closely related to the CUSUMSQ statistic in Brown, Durbin, and Evans
(1975).

8. Forecast Chow tests (Nup Chow)
Forecast F-tests are F (t−M + 1,M − k − 1) for t = M, . . . , T , and are called
N↑ as the forecast horizon increases from M to T . This tests the model over 1 to
M − 1 against an alternative which allows any form of change over M to T . A
typical statistic is calculated as:

(RSSt −RSSM−1) (M − k − 1)

RSSM−1(t−M + 1)
. (19.3)

The statistics in (19.1)–(19.3) are variants of Chow (1960) tests: they are scaled by
1-off critical values from the F-distribution at any selected probability level as an ad-
justment for changing degrees of freedom, so that the significant critical values become
a straight line at unity. Note that the first and last values of (19.1) respectively equal the
first value of (19.3) and the last value of (19.2).

All Chow tests are pointwise tests, and studied in more detail in Nielsen and Whitby
(2015).

The Chow test statistics are not calculated for RIVE/RML; the recursive RSS is not
available for RML.
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19.3 Dynamic analysis
The general class of models estimable in PcGive was discussed in Chapter 13 and can
be written in the form:

b0 (L) yt =

q∑
i=1

bi (L) zit + ϵt (19.4)

where b0 (L) and the bi (L) are polynomials in the lag operator L. Now q + 1 is the
number of distinct variables (one of which is yt), whereas k remains the number of
estimated coefficients. For simplicity we take all polynomials to be of length m:

bi (L) =

m∑
j=0

bijL
j , i = 0, . . . , q.

With b00 = 1 and using a(L) = −
∑m

j=1 b0jL
j−1 we can write (19.4) as:

yt = a (L) yt−1 +

q∑
i=1

bi (L) zit + ϵt. (19.5)

Finally, we use a = (b01, . . . , b0m)′ and bi = (bi0, . . . , bim), i = 1, . . . , q.
In its unrestricted mode of operation, PcGive can be visualized as analyzing the

polynomials involved, and it computes such functions as their roots and sums. This
option is available if a general model was initially formulated, and provided OLS or
IVE was selected.

19.3.1 Static long-run solution

When working with dynamic models, concepts such as equilibrium solutions, steady-
state growth paths, mean lags of response etc. are generally of interest. In the simple
model:

yt = β0zt + β1zt−1 + α1yt−1 + ut, (19.6)

where all the variables are stationary, a static equilibrium is defined by:

E [zt] = z∗ for all t

in which case, E [yt] = y∗ will also be constant if |α1| < 1, and yt will converge to:

y∗ = Kz∗ where K =
(β0 + β1)

(1− α1)
(19.7)

(cf. §13.4.8). For non-stationary but cointegrated data, reinterpret expression (19.7) as
E [yt −Kzt] = 0.

PcGive computes estimates of K and associated standard errors. These are called
static long-run parameters. If b0 (1) ̸= 0, the general long-run solution of (19.4) is
given by:

y∗ =

q∑
i=1

bi (1)

b0 (1)
z∗i =

q∑
i=1

Kiz
∗
i . (19.8)
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The expression yt − ΣKizit is called the equilibrium-correction mechanism (ECM)
and can be stored in the data set. If common-factor restrictions of the form bj (L) =

α (L) γj (L) , j = 0, . . . , q are imposed, then α (1) will cancel, hence enforced autore-
gressive error representations have no impact on derived long-run solutions.

The standard errors of K̂ =
(
K̂1 . . . K̂q

)′
are calculated from:

̂
V
[
K̂
]
= Ĵ

̂
V
[
β̂
]
Ĵ′ when J =

∂K

∂β′ . (19.9)

PcGive calculates J analytically using the algorithm proposed by Bårdsen (1989).
PcGive outputs the solved static long-run equation, with standard errors of the co-

efficients. This is followed by a Wald test of the null that all of the long-run coefficients

are zero (except the constant term). The V̂[K̂] matrix is printed when ‘covariance matrix
of estimated coefficients’ is checked under the model options.

19.3.2 Analysis of lag structure

The b̂i (L), i = 0, . . . , q of (19.4) and their standard errors are reported in tabular form
with the b̂i (1) (their row sums) and associated standard errors.

19.3.2.1 Tests on the significance of each variable

The first column contains F-tests of each of the q + 1 hypotheses:

Hv0 : a = 0; Hvi : bi = 0 for i = 1, . . . , q.

These test the significance of each basic variable in turn. The final column gives the
PcGive unit-root tests:

Hui : bi (1) = 0 for i = 0, . . . , q.

If Hui: bi (1) = 0 cannot be rejected, there is no significant long-run level effect
from zit; if Hvi: bi = 0 cannot be rejected, there is no significant effect from zit at
any (included) lag. Significance is marked by ∗ for 5% and ∗∗ for 1%. Critical values
for the PcGive unit-root test (Hu0: b0 (1) = 0) are based on Ericsson and MacKinnon
(2002). For the unit-root test, only significance of the dependent variable is reported
(not the remaining variables!),

Conflicts between the tests’ outcomes are possible in small samples.
Note that bi(1) = 0 and bi = 0 are not equivalent; testingKi = 0 is different again.

Using (19.6) we can show the relevant hypotheses:

significance of each variable Hv0 : α1 = 0; Hv1 : β0 = β1 = 0,

PcGive unit-root test Hu0 : α1 − 1 = 0,

Additional unit-root tests Hu1 : β0 + β1 = 0,

t-values from static long run Hl : (β0 + β1)/(1− α1) = 0.
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19.3.2.2 Tests on the significance of each lag

F-tests of each lag length are shown, beginning at the longest (m) and continuing down
to 1. The test of the longest lag is conditional on keeping lags (1, . . . ,m− 1), that of
(m− 1) is conditional on (1, . . . ,m− 2,m) etc.

19.3.3 Tests on the significance of all lags

Finally, F-tests of all lags up to m are shown, beginning at the longest (1, . . . ,m) and
continuing further from (2, . . . ,m) down to (m, . . . ,m). These tests are conditional on
keeping no lags, keeping lag 1, down to keeping (1, . . . ,m− 1). Thus, they show the
marginal significance of all longer lags.

19.3.4 COMFAC tests

COMFAC tests for the legitimacy of common-factor restrictions of the form:1

α (L) b∗0 (L) yt = α (L)

k∑
i=1

b∗i (L)xit + ut (19.10)

where α (L) is of order r and ∗ denotes polynomials of the original order minus r. The
degrees of freedom for the Wald tests for COMFAC are equal to the number of restric-
tions imposed by α (L) and the Wald statistics are asymptotically χ2 with these degrees
of freedom if the COMFAC restrictions are valid. It is preferable to use the incremental
values obtained by subtracting successive values of the Wald tests. These are χ2 also,
with degrees of freedom given by the number of additional criteria. Failure to reject
common-factor restrictions does not entail that such restrictions must be imposed. For
a discussion of the theory of COMFAC, see Hendry and Mizon (1978) and §13.4.7,
§13.6.8; for some finite-sample Monte Carlo evidence see Mizon and Hendry (1980)..

When the minimum order of lag length in the bi (L) is unity or larger (m say), the
Wald test sequence for 1, 2, . . . ,m common factors is calculated. Variables that are
redundant when lagged (Constant, Seasonals, Trend) are excluded in conducting the
Wald test sequence since they always sustain a common-factor interpretation.

19.3.5 Lag weights

Consider the simple model:

(1− α1L) yt = (β0 + β1L) zt + ut. (19.11)

With |α1| < 1 this can be written as:

yt = w (L) zt + vt,

1Using Sargan’s Wald algorithm (see Hendry, Pagan, and Sargan, 1984 and Sargan, 1980b).
Note that this non-linear Wald test is susceptible to formulation, so depends on the order of the
variables.
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when:

w (L) = (β0 + β1L) / (1− α1L) = (β0 + β1L)
(
1 + α1L+ α2

1L
2 + · · ·

)
.

Starting from an equilibrium z∗ at t = 0, a one-off increment of δ to z∗ has an impact
on y∗ at t = 0, 1, 2, . . . of w0δ, w1δ, w2δ, w3δ, . . . with the ws defined by equating
coefficients of powers of L as:

w0 = β0, w1 = β1 + β0α1, w2 = α1w1, w3 = α1w2, . . .

PcGive can graph the normalized lag weights w0/w (1), w1/w (1),. . ., ws/w (1)

and the cumulative normalized lag weights w0/w (1), (w0 + w1) /w (1),. . .,
(w0 + · · ·+ ws) /w (1).

Lag weights are available for models estimated by OLS or IVE.

19.4 Dynamic forecasting
Static forecasts, §18.2.17, can only be made ex post: only observed data is used in the
construction of the static forecasts. Genuine forecasts can be made ex ante, using past
data only. In a dynamic model this means that the future values of the lagged dependent
variable are also forecasts. Moreover, other regressors must be known or extrapolated
into the forecast period.

Suppose we estimated a simple autoregressive model with just a mean:

ŷt = α̂yt−1 + µ̂,

with the parameters estimated over the sample 1, ..., T . Then the first forecast is the
same as the static forecast:

ŷT+1|T = α̂yT + µ̂.

The second forecast is a dynamic forecast:

ŷT+2|T = α̂ŷT+1|T + µ̂.

When there are additional regressors in the model:

ŷt = α̂yt−1 + µ̂+ x′
tβ̂,

the forecast at T + h needs xT+h. This is readily available for deterministic regressors
such as the intercept, seasonals, and trend. Otherwise it has to be constructed, or the
model changed into a multivariate model that is entirely closed. The standard errors of
the forecast need to take into account that the lagged dependent variables themselves
are forecasts. The econometrics of this is discussed in Volume II (Doornik and Hendry,
2013b). Extensive treatments of forecasting can be found in Clements and Hendry
(1998) and Clements and Hendry (2011).

If the dynamic forecasts are made ex post, lagged dependent variables remain fore-
casted values (and not the actual values, eventhough they are known). However, in
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that case all other regressors are actual values. Moreover, forecast errors can then be
computed, with forecast accuracy expressed in terms of mean absolute percentage error
(MAPE), mean arctangent absolute percentage error (MAAPE), and root mean square
error (RMSE):

RMSE =

[
1

H

H∑
h=1

(
yT+h − ŷT+h|T

)2]1/2
,

MAPE =
100

H

H∑
h=1

∣∣∣∣yT+h − ŷT+h|T

yT+h

∣∣∣∣ ,
and

MAAPE =
100

H

H∑
h=1

atan2
(
|yT+h − ŷT+h|T |, |yT+h|

)
.

The MAPE is not defined (infinity) if one of the outcomes is zero, and can be very large
with an outcome close to zero. The MAAPE (Kim and Kim, 2016) avoids this problems
and remains well defined.

Forecast type There is a choice between dynamic forecasts (the default) and static
forecasts. Static or 1-step forecasts can be obtained by selecting h-step forecasts and
setting h = 1. Selecting a larger h uses forecasted y’s up to lag h − 1, but actual ys
from lag h onwards.

Forecast standard errors The default is to base the standard errors on the error vari-
ance only, thus ignoring the contribution from the fact that the parameters are estimated
and so uncertain. It is possible to take the parameter uncertainty into account, but this
is usually small relative to the error uncertainty.

Hedgehog plots Hedgehog plots graph the forecasts starting from every point in the
estimation sample. They are called hedgehog plots, because they often look like that,
with all forecast paths spiking upwards (or downwards for an inverted hedgehog).

If H is the forecast horizon, then one forecast path is:

ŷt+1|t, ŷt+2|t, ..., ŷt+H|t,

starting at observation t + 1 and using the estimated parameters from the full sample
1, ..., T . The hedgehog plot graphs all path for t = s, ..., T .

After recursive estimation, the hedgehog plot uses recursively estimated parameters.
In that case the forecast path ŷt+1|t, ..., ŷt+H|t uses parameters estimated over 1, ..., t.

The hedgehog graphs are displayed in the Hedgehog window. If robust forecasts
are requested, these will appear in Hedgehog - robust.
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Start forecast later Optionally, a gap G can be specified to delay forecasting (this
does not affect the hedgehog graphs). For the simple AR(1) model:

ŷT+G+1|T = α̂yT+G + µ̂.

ŷT+G+2|T = α̂ŷT+G+1|T + µ̂.

When new data is available, we can now compare the existing model that starts fore-
casting from the new data, to the re-estimated model that incorporates the new data.

Robust forecasts Robust forecasts take the differenced model, forecast, and then re-
integrate. If the estimated model is:

ŷt = α̂(L)yt + µ̂+ x′
tβ̂,

then after differencing:
∆ŷt = α̂(L)∆yt +∆x′

tβ̂,

we obtain dynamic forecasts of the differences:

∆̂yT+1|T , ..., ∆̂yT+H|T .

Re-integration gives:

ŷrT+1|T = yt + ∆̂yT+1|T

ŷrT+2|T = ŷrT+1|T + ∆̂yT+2|T
...

The estimated intercept disappears in the differencing, and instead we use the most
recent level (similarly, a trend becomes an intercept, which is then reintegrated, etc.). If
there was a recent break in the mean, the forecasts using full sample mean will be less
accurate than using the most recent level. Therefore the forecasts from the differenced
model are robust to breaks, at least to some extent. The price to pay in the absence of
breaks is that the forecasts will be more noisy.

Another form of robust forecasting is the double-differenced device (DDD). The
DDD is based on the observation that most economic time series do not continuously
accelerate. It amounts to setting the second differences (of the logarithms) to zero, so
no estimation is involved. This can be achieved in PcGive by creating ∆∆yt in the
database, and then formulating an empty model for this. An alternative would be to use
∆∆Syt when there is seasonality and the data frequency is S. More information is in
Clements and Hendry (2011).

Level forecasts Models for economic variables are often formulated in terms of
growth rates: denoting the level by Yt, the dependent variable is then the first differ-
ence of the logarithm: yt = ∆ log Yt. The objective of the transformation is to model a
(approximately) stationary representation of the dependent variable. But, when it comes
to forecasting, it is often useful to be able to present the results in the original levels.
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PcGive automatically recognizes the following dynamic transformations of the de-
pendent variable:

∆yt,∆Syt,∆∆yt,∆∆Syt, yt (undifferenced),

where S is the frequency of the data. Lagged dependent variables are taken into account,
as are ∆yt,∆Syt if they appear on the right-hand side in a model for a higher difference.

In addition, the following functional transformations are detected:

log Yt, logitYt = log
Yt

1− Yt
, Yt (untransformed),

together with an optional scale factor.
If the model fits in this mould, the levels forecasts can be automatically generated

by PcGive. First, the dynamic transformations are substituted out to give forecasts

ŷT+1|T , ..., ŷT+H|T ,

with corresponding standard deviations

ŝT+1|T , ..., ŝT+H|T .

Because the differenced model assumes normality, these are still normally distributed.
Removing one level of differences makes the standard errors grow linearly, etc.

There are two types of level forecasts, median and mean, which are identical if no
functional transformation is used. They differ, however, for logarithmic transforma-
tions:
Median forecasts are easily derived from the inverse transformation:

yt = log Yt, then ŶT+h|T = exp ŷT+h|T ,

yt = logitYt, then ŶT+h|T =
[
1 + exp(−ŷT+h|T )

]−1
.

Mean forecasts when log Yt is normally distributed, Yt is log-normal. Similarly, when
logitYt is normally distributed, Yt has the logit-normal distribution. Both are dis-
cussed by Johnson (1949).
For the log-normal, when yT+h|T ∼ N[ŷT+h|T , ŝ

2
T+h|T ] then

E[YT+h|T ] = exp(ŷT+h|T + 1
2 ŝ

2
T+h|T ).

The equivalent expression for the logit-normal can be found in Johnson (1949,
eqn.56) and is not quite so simple.2

2PcGive uses this expression for ŝT+h|T > 1/3, otherwise a third order Taylor expansion is
used. So we do not exactly follow Wallis (1987) who advocates a second order Taylor expansion.
The first reason is that the Taylor expansion is highly inaccurate for ŝT+h|T > 1. The second
reason is that we also wish to report the standard error of the logit-normally distributed forecasts.
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The quantiles of the log and logistic-normal are simply derived from the inverse
distribution. This is used in the plots for the 5% and 95% confidence bands:

yt = log Yt, then exp
(
ŷT+h|T ± 2ŝT+h|T

)
,

yt = logitYt, then
[
1 + exp

(
−ŷT+h|T ∓ 2ŝT+h|T

)]−1
.

These bands will not be symmetric around the mean (or median) forecasts.
The standard errors of the level forecasts are also reported. In the log-normal case

these are:

sd[YT+h|T ] = exp
(
ŷT+h|T + 1

2 ŝ
2
T+h|T

)(
exp s2T+h|T − 1

)1/2
.

For the logit-normal distribution we refer to Johnson (1949, eqn.58).3

Derived function OxMetrics Algebra expressions can be used for derived functions.
E.g. the cum() function, together with the appropriate initial conditions maps back from
a first difference, and exponents from logarithms. In this case, the forecast standard
errors are derived numerically.

19.5 Diagnostic tests

19.5.1 Introduction

Irrespective of the estimator selected, a wide range of diagnostic tests is offered, inti-
mately related to the model evaluation criteria discussed in Chapter 15, also see §13.6
and §13.9. Tests are available for residual autocorrelation, conditional heteroscedastic-
ity, normality, unconditional heteroscedasticity/functional form mis-specification and
omitted variables. Recursive residuals can be used if these are available. Tests for com-
mon factors and linear restrictions are discussed in §19.3.4 and §19.6 below, encom-
passing tests in §19.10. Thus, relating this section to the earlier information taxonomy
in §15.7, the diagnostic tests of this section concern the past (checking that the errors
are a homoscedastic, normal, innovation process relative to the information available),
whereas the forecast statistics discussed in Chapter 18 concern the future and encom-
passing tests concern information specific to rival models.

Many test statistics in PcGive have either a χ2 distribution or an F distribution.
F-tests are usually reported as:

F(num,denom) = Value [Probability] /*/**

for example:
F(1, 155) = 5.0088 [0.0266] *

where the test statistic has an F-distribution with one degree of freedom in the numer-
ator, and 155 in the denominator. The observed value is 5.0088, and the probability of
getting a value of 5.0088 or larger under this distribution is 0.0266. This is less than

3The required derivative is computed using a simple finite difference approximation.
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5% but more than 1%, hence the star. Significant outcomes at a 1% level are shown by
two stars. χ2 tests are also reported with probabilities, as for example:

Normality Chi^2(2) = 2.1867 [0.3351]

The 5% χ2 critical values with two degrees of freedom is 5.99, so here normality is not
rejected (alternatively, Prob(χ2 ≥ 2.1867) = 0.3351, which is more than 5%). Details
on the computation of probability values and quantiles for the F and χ2 tests are given
under the probf, probchi, quanf and quanchi functions in the Ox reference manual
(Doornik, 2021).

Some tests take the form of a likelihood ratio (LR) test. If ℓ is the unrestricted, and
ℓ0 the restricted log-likelihood, then −2(ℓ0 − ℓ) has a χ2(s) distribution, with s the
number of restrictions imposed (so model ℓ0 is nested in ℓ).

Many diagnostic tests are calculated through an auxiliary regression. For single-
equation tests, they take the form of TR2 for the auxiliary regression so that they are
asymptotically distributed as χ2 (s) under their nulls, and hence have the usual additive
property for independent χ2s. In addition, following Harvey (1990) and Kiviet (1986),
F-approximations are calculated because they may be better behaved in small samples:

R2

1− R2
.
T − k − s

s
∼ F (s, T − k − s) (19.12)

When the covariance matrix is block diagonal between regression and heteroscedas-
ticity (or ARCH) function parameters, tests can take the regression parameters as given,
see Davidson and MacKinnon (1993, Ch. 11):

R2

1− R2
.
T − s
s
∼ F (s, T − s) .

This may be slightly different if not all parameters are included in the test, or when
observations are lost in the construction of the test.

19.5.2 Residual autocorrelations (ACF), Portmanteau and DW

The sample autocorrelation function (ACF) of a variable xt is the series {rj} where rj
is the correlation coefficient between xt and xt−j for j = 1, . . . , s:4

rj =

∑T
t=j+1 (xt − x̄) (xt−j − x̄)∑T

t=1 (xt − x̄)
2

. (19.13)

Here x̄ = 1
T

∑T
t=j xt is the sample mean of xt.

4Old version of PcGive (version 9 and before) used the running mean in the denominator. The
difference with the current definition tends to be small, and vanishes asymptotically, provided
the series is stationary. Nielsen (2006b) calls this version the correlogram, and the ACF the
covariogram. He argues that the correlogram provides a better discrimination between stationary
and non-stationary variables: for an autoregressive value of one (or higher), the correlogram
declines more slowly than the ACF.
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The residual correlogram is defined as above, but using the residuals from the
econometric regression, rather than the data. Thus, this reports the series {rj} of corre-
lations between the residuals ût and ût−j . In addition, PcGive prints the partial auto-
correlation function (PACF) (see the OxMetrics book).

It is possible to calculate a statistic based on ‘T ∗ (sum of s squared autocorrela-
tions)’, with s the length of the correlogram, called the Portmanteau statistic:

LB (s) = T 2
s∑

j=1

r2j
T − j

. (19.14)

This is corresponds to Box and Pierce (1970), but with a degrees of freedom correc-
tion as suggested by Ljung and Box (1978). It is designed as a goodness-of-fit test in
stationary, autoregressive moving-average models. Under the assumptions of the test,
LB(s) is asymptotically distributed as χ2(s− n) after fitting an AR(n) model. A value
such that LB(s) ≥ 2s is taken as indicative of mis-specification for large s. However,
small values of such a statistic should be treated with caution since residual autocorre-
lations are biased towards zero (like DW) when lagged dependent variables are included
in econometric equations. An appropriate test for residual autocorrelation is provided
by the LM test in §19.5.3 below.

19.5.2.1 Durbin–Watson statistic (DW)

This is a test for autocorrelated residuals and is calculated as:

DW =

∑T
t=2 (ût − ût−1)

2∑T
t=1 û

2
t

. (19.15)

DW is most powerful as a test of {ut} being white noise against:

ut = ρut−1 + ϵt where ϵt ∼ IID
(
0, σ2

ϵ

)
.

If 0 < DW < 2, then the null hypothesis is H0: ρ = 0, that is, zero autocor-
relation (so DW = 2) and the alternative is H1: ρ > 0, that is, positive first-order
autocorrelation.

If 2 < DW < 4, then H0: ρ = 0 and H1: ρ < 0, in which case DW ∗ = 4 −DW
should be computed.

The significance values of DW are widely recorded in econometrics’ textbooks.
However, DW is a valid statistic only if all the xt variables are non-stochastic, or at
least strongly exogenous. If the model includes a lagged dependent variable, then DW
is biased towards 2, that is, towards not detecting autocorrelation, and Durbin’s h-test
(see Durbin, 1970) or the equivalent LM-test for autocorrelation in §19.5.3 should be
used instead. For this reason, we largely stopped reporting the DW statistic. Also see
§17.4 and §13.6.
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19.5.3 Error autocorrelation test (not for ML)

This is the Lagrange-multiplier test for rth order residual autocorrelation, distributed as
χ2 (r) in large samples, under the null hypothesis that there is no autocorrelation (that
is, that the errors are white noise). In standard usage, r ≃ 1

2s for s in §19.5.2 above,
so this provides a type of Portmanteau test (see Godfrey, 1978). However, any orders
from 1 up to 12 can be selected to test against:

ut =

r∑
i=p

αiut−i + ϵt where 0 ≤ p ≤ r.

The LM test is calculated by regressing the residuals on all the regressors of the original
model and the lagged residuals for lags p to r (missing residuals are set to zero). The
LM test χ2(r − p + 1) is TR2 from this regression (or the F-equivalent), and the error
autocorrelation coefficients are the coefficients of the lagged residuals. For an excellent
exposition, see Pagan (1984).

As noted above, the F-form suggested by Harvey (1981, see Harvey, 1990) is the
recommended diagnostic test. Following the outcome of the F-test (and its p-value), the
error autocorrelation coefficients are recorded.

19.5.4 Normality test

Let µ, σ2
x denote the mean and variance of {xt}, and write µi = E [xt − µ]i, so that

σ2
x = µ2. The skewness and kurtosis are defined as:

√
β1 =

µ3

µ
3/2
2

and β2 =
µ4

µ2
2

. (19.16)

Sample counterparts are defined by

x̄ =
1

T

T∑
t=1

xt, mi =
1

T

T∑
t=1

(xt − x̄)i ,
√
b1 =

m3

m
3/2
2

and b2 =
m4

m2
2

. (19.17)

A normal variate will have
√
β1 = 0 and β2 = 3. Bowman and Shenton (1975) consider

the test:

e1 =
T (
√
b1)

2

6
+
T (b2 − 3)

2

24
ã χ2 (2) , (19.18)

which subsequently was derived as an LM test by Jarque and Bera (1987). Unfortu-
nately e1 has rather poor small sample properties:

√
b1 and b2 are not independently

distributed, and the sample kurtosis especially approaches normality very slowly. The
test reported by PcGive is based on Doornik and Hansen (2008) (originally Doornik and
Hansen, 1994), who employ a small sample correction, and adapt the test for the multi-
variate case. It derives from Shenton and Bowman (1977), who give b2 (conditional on
b2 > 1 + b1) a gamma distribution, and D’Agostino (1970), who approximates the dis-
tribution of

√
b1 by the Johnson Su system. Let z1 and z2 denote the transformed skew-

ness and kurtosis, where the transformation creates statistics which are much closer to
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standard normal. The test statistic is:

e2 = z21 + z22 ãpp χ
2 (2) . (19.19)

Table 19.1 compares (19.19) with its asymptotic form (19.18). It gives the rejection
frequencies under the null of normality, using χ2(2) critical values. The experiments
are based on 10 000 replications and common random numbers.

Table 19.1 Empirical size of normality tests

nominal probabilities of e2 nominal probabilities of (19.18)
T 20% 10% 5% 1% 20% 10% 5% 1%

50 0.1734 0.0869 0.0450 0.0113 0.0939 0.0547 0.0346 0.0175
100 0.1771 0.0922 0.0484 0.0111 0.1258 0.0637 0.0391 0.0183
150 0.1845 0.0937 0.0495 0.0131 0.1456 0.0703 0.0449 0.0188
250 0.1889 0.0948 0.0498 0.0133 0.1583 0.0788 0.0460 0.0180

PcGive reports the following statistics under the normality test option, replacing xt by
the residuals ut:

mean x̄

standard deviation σx =
√
m2

skewness
√
b1

excess kurtosis b2 − 3

minimum
maximum
median med(x) = median(xt, t = 1, ..., T )

madn median absolute deviation cNmed|xt −med(x)|
asymptotic test e1
normality testχ2 (2) e2

[
P
(
χ2 (2) ≥ e2

)]
The median absolute deviation is a robust measure of scale, where cN is an adjust-

ment to get a scale of unity when the data is standard normal: cN = 1/Φ−1(3/4) ≈
1.483.

19.5.5 Heteroscedasticity test using squares (not for ML)

This test is based on White (1980), and involves an auxiliary regression of {û2t} on
the original regressors (xit) and all their squares (x2it). The null is unconditional ho-
moscedasticity, and the alternative is that the variance of the {ut} process depends on
xt and on the x2it. The output comprises TR2, the F-test equivalent, the coefficients
of the auxiliary regression, and their individual t-statistics, to help highlight problem
variables. Variables that are redundant when squared are automatically removed, as are
observations that have a residual that is (almost) zero. Some additional information can
be found in Volume II.
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19.5.6 Heteroscedasticity test using squares and cross-products (not for ML)

This test is that of White (1980), and only calculated if there is a large number of
observations relative to the number of variables in the regression. It is based on an
auxiliary regression of the squared residuals

(
û2t
)

on all squares and cross-products
of the original regressors (that is, on r = 1

2k (k + 1) variables). That is, if T >>

k (k + 1), the test is calculated; redundant variables are automatically removed, as are
observations that have a residual that is (almost) zero. The usual χ2 and F-values are
reported; coefficients of the auxiliary regression are also shown with their t-statistics to
help with model respecification. This is a general test for heteroscedastic errors: H0 is
that the errors are homoscedastic or, if heteroscedasticity is present, it is unrelated to
the xs.

In previous versions of PcGive this test used to be called a test for functional form
mis-specification. That terminology was criticized by Godfrey and Orme (1994), who
show that the test does not have power against omitted variables.

19.5.7 ARCH test

This is the ARCH (AutoRegressive Conditional Heteroscedasticity) test: see Engle,
1982) which in the present form tests the hypothesis γ = 0 in the model:

E
[
u2t | ut−1, . . . , ut−r

]
= c0 +

r∑
i=1

γiu
2
t−i

where γ = (γ1, . . . , γr)
′. Again, we have TR2 as the χ2 test from the regression of

û2t on a constant and û2t−1 to û2t−r (called the ARCH test) which is asymptotically
distributed as χ2 (r) on H0: γ = 0. The F-form is also reported. Both first-order and
higher-order lag forms are easily calculated (see Engle, 1982, and Engle, Hendry, and
Trumbull, 1985).

19.5.8 RESET (OLS only)

The RESET test (Regression Specification Test) due to Ramsey (1969) tests the null
of correct specification of the original model against the alternative that powers of ŷt
such as (ŷ2t , ŷ

3
t . . .) have been omitted (PcGive only allows squares). This tests to see

if the original functional form is incorrect, by adding powers of linear combinations of
xs since by construction, ŷt = x

′

tβ̂t.
We use RESET23 for the test that uses squares and cubes, while RESET refers to

the test just using squares.

19.5.9 Parameter instability tests (OLS only)

Parameter instability statistics are reported for σ2, followed by the joint statistic for all
the parameters in the model (also see §19.5.9), based on the approach in Hansen (1992).
Next, the instability statistic is printed for each parameter

(
β1, . . . , βk, σ

2
)
.
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Large values reveal non-constancy (marked by ∗ or ∗∗), and indicate a fragile model.
Note that this measures within-sample parameter constancy, and is computed if numer-
ically feasible (it may fail owing to dummy variables), so no observations need be
reserved. The indicated significance is only valid in the absence of non-stationary re-
gressors.

19.5.10 Diagnostic tests for NLS

The LM tests for autocorrelation, heteroscedasticity and functional form require an aux-
iliary regression involving the original regressors xit. NLS uses ∂f(xt,θ)/∂θi (evalu-
ated at θ̂) instead. The auxiliary regression for the autocorrelation test is:

ût =

k∑
i=1

βi

(
∂f(xt,θ)

∂θi

)
⌋θ̂

+

r∑
i=p

αiût−i + ϵt. (19.20)

These three tests are not computed for models estimated using ML.

19.6 Linear restrictions test
Writing the model in matrix form as y = Xβ + u, the null hypothesis of p linear
restrictions can be expressed as H0: Rβ = r, with R a (p × k) matrix and r a p ×
1 vector. This test is well explained in most econometrics textbooks, and uses the
unrestricted estimates (that is, it is a Wald test).

The subset form of the linear restrictions tests is: H0: βi = · · · = βj = 0: any
choice of coefficients can be made, so a wide range of specification hypothesis can be
tested.

19.7 General restrictions

Writing θ̂ = β̂, with corresponding variance-covariance matrix V
[
θ̂
]
, we can test for

(non-) linear restrictions of the form (see §A1.1 for the syntax):

f (θ) = 0.

The null hypothesis H0 : f(θ) = 0 will be tested against H1 : f(θ) ̸= 0 through a Wald
test:

w = f
(
θ̂
)′(

ĴV
[̃
θ̂
]
Ĵ′
)−1

f
(
θ̂
)

where J is the Jacobian matrix of the transformation: J = ∂f(θ)/∂θ′. PcGive com-
putes Ĵ by numerical differentiation. The statistic w has a χ2(s) distribution, where s
is the number of restrictions (that is, equations in f(·)). The null hypothesis is rejected
if we observe a significant test statistic.
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19.8 Test for omitted variables (OLS)
Lag polynomials of any variable in the database can be tested for omission. Variables
that would change the sample or are already in the model are automatically deleted.
The model itself remains unchanged. If the model is written in matrix form as y =

Xβ + Zγ + u, then H0: γ = 0 is being tested. The test exploits the fact that on H0:

√
T γ̂

D−→ Np

(
0, σ2 (Z′MXZ/T )

−1
)

with MX = IT −X (X′X)
−1

X′, (19.21)

then:
γ̂′ (Z′MXZ) γ̂

σ̂2
.
T − k − p

p
∼ F (p, T − k − p) (19.22)

for p added variables.
Since (X′X)

−1 is precalculated, the F-statistic is easily computed by partitioned
inversion. Computations for IVE are more involved.

19.9 Progress: the sequential reduction sequence
Finally, because of the methodological arguments advanced in Chapter 15, PcGive
has specific procedures programmed to operate when a general-to-specific mode is
adopted.5 In PcGive, when a model is specified and estimated by least squares or in-
strumental variables, then the general dynamic analysis is offered: see §19.3.

However, while the tests offered are a comprehensive set of Wald statistics on vari-
ables, lags and long-run outcomes, a reduction sequence can involve many linear trans-
formations (differencing, creating differentials etc.) as well as eliminations. Conse-
quently, as the reduction proceeds, PcGive monitors its progress, which can be reviewed
at the progress menu. The main statistics reported comprise:
1. The number of parameters, the log-likelihood and the SC, HQ and AIC information

criteria for each model in the sequence.
2. F-tests of each elimination conditional on the previous stage.

19.10 Encompassing and ‘non-nested’ hypotheses tests
Once appropriate data representations have been selected, it is of interest to see whether
the chosen model can explain (that is, account for) results reported by other investiga-
tors. Often attention has focused on the ability of chosen models to explain each other’s
residual variances (variance encompassing), and PcGive provides the facility for doing
so using test statistics based on Cox (1961) as suggested by Pesaran (1974). Full de-
tails of those computed by PcGive for OLS and IVE are provided in Ericsson (1983).
Note that a badly-fitting model should be rejected against well-fitting models on such

5Note that PcGive does not force you to use a general-to-specific strategy. However, we hope
to have given compelling arguments in favour of adopting such a modelling strategy.
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tests, and that care is required in interpreting any outcome in which a well-fitting model
(which satisfies all of the other criteria discussed in Chapter 15) is rejected against a
badly-fitting, or silly, model (see Mizon, 1984, Mizon and Richard, 1986, and Hendry
and Richard, 1989). The Sargan test is for the restricted reduced form parsimoniously
encompassing the unrestricted reduced form, which is implicitly defined by projecting
yt on all of the non-modelled variables. The F-test is for each model parsimoniously
encompassing their union. This is the only one of these tests which is invariant to the
choice of common regressors in the two models.6 Thus, the F-test yields the same nu-
merical outcome for the first model parsimoniously encompassing either the union of
the two models under consideration, or the orthogonal complement to the first model
relative to the union. In PcGive, tests of both models encompassing the other are re-
ported.

6For example, if either the first or both models have the lagged dependent variable yt−1, the
same F-value is produced. However, a different value will result if only the second model has
yt−1.
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Appendix A1

Algebra and Batch for Single Equation
Modelling

PcGive is mostly menu-driven for ease of use. To add flexibility, certain functions can
be accessed through entering commands. The syntax of these commands, which can be
seen as little computer languages, is described in this chapter.

Algebra is described in the OxMetrics manuals. Algebra commands are executed in
OxMetrics, via the Calculator, the Algebra editor, or as part of a batch run.

A1.1 General restrictions

Restrictions have to be entered when testing for parameter restrictions and for imposing
parameter constraints for estimation. The syntax is similar to that of algebra, albeit
more simple.

Restrictions code may consist of the following components:
1. Comment
2. Constants
3. Arithmetic operators
These are all identical to algebra. In addition there are:
(4) Parameter references

Parameters are referenced by an ampersand followed by the parameter number.
Counting starts at 0, so, for example, &2 is the third parameter of the model. What
this parameter is depends on your model. Make sure that when you enter restric-
tions through the batch language, you use the right order for the coefficients. In case
of IV estimation PcGive will reorder your model so that the endogenous variables
come first.
Consider, for example, the following unconstrained model:

CONSt = β0CONS 1t + β1INCt + β2INC 1t + β3INFLATt + β4 + ut.
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Then &0 indicates the coefficient on CONS 1, etc.
Restrictions for testing are entered in the format: f(θ) = 0;. The following restric-

tions test the significance of the long-run parameters in this unconstrained model:
(&1 + &2) / (1 - &0) = 0;

&3 / (1 - &0) = 0;

A1.2 Non-linear models

A1.2.1 Non-linear least squares

A non-linear model is formulated in Algebra code. The following extensions are used:
1. parameter references

Parameters are referenced by an ampersand followed by the parameter number. The
numbering does not have to be consecutive, so your model can use for example &1,
&3 and &4.
Consider, for example, the following specification of the fitted part:
fitted = &0*lag(CONS,1) + &1*INC + &3*INFLAT + &4;

2. starting values
Starting values are entered in the format: &parameter=value;. For example:
&0 = 0; &1 = 1; &3 = -1; &4 = 1;

The following two variables must be defined for NLS to work:
1. actual

Defines the actual values (the y variable).
2. fitted

Defines the fitted values (the ŷ variable).
Together, these formulate the whole non-linear model, as in the following example:

actual = CONS;
fitted = &0 + &1*lag(CONS,1) + &2*INC - &1*&2*lag(INC,1);

You are advised to work through the examples in Chapters 8 and 10 before trying to
estimate models by NLS or RNLS. Also see §18.4.1.

A1.2.2 Maximum likelihood

Maximum likelihood models are defined using the three variables:
1. actual

2. fitted

3. loglik

Both actual and fitted only define the variables being used in the graphic anal-
ysis and the residual based tests. The loglik variable defines the function to be maxi-
mized. Parameters and starting values are as for NLS. See Chapter 10 and §18.4.2.
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A1.3 PcGive batch language

Table A1.1 Batch language syntax summary

adftest("var", lag, deterministic=1, summary=1);
algebra { . . .}
appenddata("filename", "group");
appresults("filename");
arorder(ar1, ar2);
autometrics(pvalue, "outlier"="none", prelag=1);
autometrics set("option", value);
autometrics sign("var", isnegative=1, isexact=0);
break;

chdir("path");
command("command line");
createinterventions { . . .}
database(year1, period1, year2, period2, frequency);
derived { . . .}
dynamics;

estimate("method"=OLS, year1=-1, period1=0, year2=-1, period2=0, forc=0, init=0);
exit;

forecast(nforc, hstep=0, SEtype=1, levels=0, extra=0 or ””, hegdehog=0, gap=0);
graphicanalysis("window");
indicator { . . .}
loadalgebra("filename");
loadbatch("filename");
loadcommand("filename");
loaddata("filename");
module("name");
nonlinear { . . .}
option("option", argument);
output("option");
package("PcGive", "package");
print("text");
println("text");
progress;

recursive;

saturate("IIS");
savedata("filename");
saveresults("filename");
setdraw("option", i1=0, i2=0, i3=0, i4=0, i5=0);
store("name", "rename"="");
system { . . .}
test("test", lag1=0, lag2=0);
testlinres { . . .}
testgenres { . . .}
testsummary;

usedata("databasename");
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PcGive allows models to be formulated, estimated and evaluated through batch
commands. Such commands are entered in OxMetrics. Certain commands are inter-
cepted by OxMetrics, such as those for loading and saving data, as well as blocks of
algebra code. The remaining commands are then passed on to the active module, which
is PcGive in this case. This section gives an alphabetical list of the PcGive batch lan-
guage statements. There are two types of batch commands: function calls (with or
without arguments) terminated by a semicolon, and commands, which are followed by
statements between curly brackets.

Anything between /* and */ is considered comment. Note that this comment can-
not be nested. Everything following // up to the end of the line is also comment.

OxMetrics allows you to save the current model as a batch file, and to rerun saved
batch files. If a model has been created interactively, it can be saved as a batch file for
further editing or easy recall in a later session. This is also the most convenient way to
create a batch file.

If an error occurs during processing, the batch run will be aborted and control re-
turned to OxMetrics. A warning or out of memory message will have to be accepted by
the user (press Enter), upon which the batch run will resume.

In the following list, function arguments are indicated by words, whereas the ar-
eas where statement blocks are expected are indicated by . . . . Examples follow the
list of descriptions. For terms in double quotes, the desired term must be substituted
and provided together with the quotes. A command summary is given in Table A1.1.
For completeness, the Table A1.1 also contains the commands which are handled by
OxMetrics. Consult the OxMetrics book for more information on those commands.

adftest("var", lag, deterministic=1, summary=1);
The var argument specifies the variable for the ADF test, lag is the lag length to be
used. The det argument indicates the choice of deterministic variables:

0 no deterministic variables,
1 constant,
2 constant and trend,
3 constant and seasonals,
4 constant, trend and seasonals.

Finally, the summary argument indicates whether a summary table is printed (1) or
full output (0).

autometrics(pvalue, "outlier"="none", prelag=1);
Indicates that Autometrics should be run at significance level pvalue. All options
are set to their default values. The optional second argument specifies the outlier
choice, and is one of
"none" nothing added;
"large" adds an impulse dummy for large outliers;
"IIS" (or "dummy") adds an impulse dummy for every observation: impulse indi-

cator saturation (IIS);
"SIS" or adds a step dummy (or level shift: one up to the date used in the variable

name) for every observation: step indicator saturation (SIS);
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"IIS+SIS" impulse and step saturation;
"DIS" adds a differenced impulse dummy for every observation (one, minus one,

rest zero);
"DIS+IIS" differences and impulse saturation.
Old-style labelling is available using arguments "DI:", "I:", "S1:", "T1:".
For MIS use "MIS@var ".

The third argument specifies whether pre-search lag reduction should be run or not
(1 or 0).

autometrics set("option", value);
Changes an Autometrics option from its default value. The options are:

"pre-lag" 0, 1
"pre-var" 0, 1
"effort" 0, 1, 2, 3
"backtesting" "none", "GUM0" , "current GUM"

"tie-breaker" "Union","AIC","HQ","SC","Min","Cp","Max"
"print" 0,1,2,3
"pvalue tests" p-value
"stderr" ”hcse”, ”hacse”
"give rf" 0,1
"block fraction" fraction
"block method" 0,1,2,3
"block max" size of largest block
"test default" 0,1
"test ar" 0,1
"test arch" 0,1
"test chow" 0,1
"test hetero" 0,1
"test heterox" 0,1
"test normality" 0,1
"test reset" 0,1
"test portmanteau" 0,1
"arg default" 0,1
"arg ar" lag length
"arg arch" lag length
"arg chow" fraction
"arg portmanteau" lag length

createinterventions { . . .}
This PcGive batch function is the same as indicator, and creates intervention
indicators in the current OxMetrics database. The argument inside the curly braces
is a comma-separated list of names inside double quotes. The names uses the same
format as Autometrics, e.g.
createinterventions {"II#1980(3)","SI#2009(9)","TI#1990(3)"}

Or using old names:
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createinterventions {"I:1980(3)","S1:2009(8)","T1:1990(2)"}

derived { . . .}
Specify Algebra code for derived variables to be used in forecasting.

dynamics;

Does part of the dynamic analysis: the static long-run solution and the lag structure
analysis.

estimate("method"=OLS, year1=-1, period1=0, year2=-1, period2=0, forc=0);
Estimate a system. The presence of default arguments implies that the shortest ver-
sion is just: estimate(), which estimates by OLS using the maximum possible
sample, and no forecasts. Similarly, a call to estimate("OLS", 1950, 1) corre-
sponds to estimate("OLS", 1950, 1, -1, 0, 0).
The method argument is one of:

OLS-CS ordinary least squares (cross-section regression),
IVE-CS instrumental variables estimation (cross-section regression),
OLS ordinary least squares,
IVE instrumental variables estimation,
NLS non-linear least squares (non-linear modelling),
ML maximum likelihood (non-linear modelling).

year1(period1) – year2(period2) is the estimation sample. Setting year1 to −1 will
result in the earliest possible year1(period1), setting year2 to −1 will result in the
latest possible year2(period2).
forc is the number of observations to withhold from the estimation sample for fore-
casting.

forecast(nforc, hstep=0, setype=1, levels=0, extra=0, hegdehog=0, gap=0);
Prints nforc dynamic forecasts (when hstep is zero) or hstep forecasts. The third
argument is the standard error type: 0 to not compute; 1 for error variance only (the
default); 2 to include parameter uncertainty. For example, forecast(8) produces
eight dynamic forecasts with error-variance based standard errors; forecast(8,4)
produces the 4-step forecasts (note that the first three will coincide with 1,2,3-step
respectively). Use the store command next to store the forecasts if necessary.
Set the levels argument to one to also produce levels forecasts; and set the extra
argument to one to include robust forecasts. The extra argument can also be a string
to specify the extra forecasts: "robust", "Cardt", "Robust+Cardt".
The hegdehog argument can be used to produce hedgehog graphs (forecasting ahead
from each point in the estimation sample). Finally gap waits the specified number
of observations after the end of the estimation sample to start forecasting.

indicator { . . .}
This PcGive batch function creates intervention indicators in the current OxMetrics
database. The argument inside the curly braces is a comma-separated list of names
inside double quotes. The names uses the same format as Autometrics, e.g.

indicator {"II#1980(3)","SI#2009(9)","TI#1990(3)"}

Or using old names:
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indicator {"I:1980(3)","S1:2009(8)","T1:1990(2)"}

module("PcGive");

Starts the PcGive module (if PcGive is not already running).

nonlinear { . . .}
Formulates a non-linear model. The code between { } must conform to the syntax
of §A1.2.

output("option");
Prints further output:

option
correlation print correlation matrix of variables,
covariance print covariance matrix of coefficients,
equation print the model equation format,
forecasts print the static forecasts,
HCSE Heteroscedasticity-consistent standard errors
infcrit report information criteria,
instability report instability tests,
latex print the model in latex format,
r2seasonals report R2 about seasonals,
reducedform print the reduced form,
sigpar significant digits for parameters (second argument),
sigse significant digits for standard errors (second argument).

option("option", argument);
The first set relates to maximization:

option argument value
maxit maximum number of iterations default: 1000,
print print every # iteration 0: do not print,
compact compact or extended output 0 for off, 1 on,
strong strong convergence tolerance default: 0.005,
weak set weak convergence tolerance default: 0.0001,

The second set of options adds further output automatically:

option argument value
equation add equation format 0 for off, 1 on,
infcrit report information criteria 0 for off, 1 on.
instability report instability tests 0 for off, 1 on,
HCSE Heteroscedasticity-consistent SEs 0 for off, 1 on,
r2seasonals report R2 about seasonals 0 for off, 1 on,

package("PcGive", "package");
Use this command to select the correct component (package) from PcGive:
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package
"Cross-section"

"Multiple-equation"

"Non-linear"

"Single-equation"

The package arguments can be shortened to 5 letters.

progress;

Reports the modelling progress.

saturate("IIS");
Saturates the database with the specified indicators, where the argument can be:

"DIS" differenced impulse indicators
"IIS" impulse indicators
"SIS" step indicators (one, then zero)
"TIS" trend indicators (upward trend, then zero)
"QIS" quadratic trend indicators

"MIS@var" multiplicate indicators of variable var
"II#" IIS
"SI#" SIS
"TI#" TIS
"AO#" additive outliers (same as IIS)
"LS#" level shift (zero then one, LS#2001 = 1− SI#2001)
"LT#" local trend (zero then trending, TI#2001 + LS#2001 = t− c )
"I:" old style names IIS
"S1:" old style names SIS
"T1:" old style names TIS

store("name", "rename"="");
Use this command to store residuals, etc. into the database, the default name is
used. Note that if the variable already exists, it is overwritten without warning.
The name must be one of: residuals, fitted, res1step, stdinn, rss, eqse,
innov, loglik.
The optional second argument replaces the default name. For exam-
ple store("residuals") stores the residuals under the name Residual;
store("residuals", "xyz") stores them under the name xyz.

system { Y=. . . ; Z=. . . ; U=. . . ; A=. . . ; }
Specify the system, consisting of the following components:
Y endogenous variables;
A additional instruments (optional);
Z non-modelled variables;
U unrestricted variables (optional, treated as Z).

The variables listed are separated by commas, their base names (that is, name ex-
cluding lag length) must be in the database. If the variable names are not a valid
token, the name must be enclosed in double quotes.
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The following special variables are recognized: Constant, Trend, Seasonal, CSea-
sonal, and indicators of type DI#, II#, SI#, TI#, MI#, QI#, LS#, LT#.
Note that when IVE/RIVE are used PcGive reorders the model as follows: the en-
dogenous variables first and the additional instruments last. This reordering is rele-
vant when specifying restrictions.
This model

system

{

Y = "log(LY)" 0:3;

Z = Constant, "log(X)" 1:2 4:5 3, LC 0:5;

}

is equivalent to
system

{

Y = "log(LY)", "log(LY)_1", "log(LY)_2", "log(LY)_3";

Z = Constant, "log(X)_1", "log(X)_2", "log(X)_4", "log(X)_5", "log(X)_3",

LC, LC_1, LC_2, LC_3, LC_4, LC_5;

}

test("test", lag1=0, lag2=0);
Performs a specific test using the specified lag lengths.

"ar" test for autocorrelated errors from lag1 to lag2;
"arch" ARCH test up to order lag1;
"chow" Chow test at specified or default sample fraction;
"comfac" test for common factor;
"encompassing" tests the two most recent models for encompassing;
"hetero" heteroscedasticity test (squares);
"heterox" heteroscedasticity test (squares and cross products);
"instability" instability tests;
"normal" normality test;
"rescor" residual correlogram up to lag lag1;
"reset" Reset test using squares;
"reset23" Reset test using squares and cubes;
”var” Omitted variable test of ”var” up to lag lag1.

testgenres { . . .}
Used to test for general restrictions: specify the restrictions between { }, conform-
ing to §A1.1.

testlinres { . . .}
Test for linear restrictions. The content is the matrix dimensions followed by the
(R : r) matrix.

testres { . . .}
Test for exclusion restrictions. The content lists the variables to be tested for ex-
clusion, separated by a comma (remember that variable names that are not proper
tokens must be enclosed in double quotes).
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testsummary;

Do the test summary.

We finish with an annotated example using most commands. To run this file, we
assume that OxMetrics is loaded with data.in7, and that PcGive has been started.

module("PcGive");
package("PcGive", "Single-equation");
usedata("data.in7");
system
{

Y = CONS, INC; // endogenous variables
Z = CONS_1, INC_1, // non-modelled variables

Constant;
A = OUTPUT, OUTPUT_1; // additional instruments, optional

}
estimate("IVE", 0, 0, 0, 0, 8);

// Estimate by IV over maximum sample:
// 1953(2)-1992(3), use 8 forecasts

testsummary; // Do the test summary.
dynamics; // Do dynamic analysis.
store("residuals"); // store the residuals
testgenres // Test for general restrictions.
{

&1 - &2 = 0; // coeff of CONS_1 - coeff of INC_1.
}
testlinres // Test for linear restrictions.
{ // same restriction

1 5
0 1 -1 0 0

}
testres // Test an exclusion restriction
{

CONS_1, INC_1
}
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PcGive Artificial Data Set

(data.in7/data.bn7)

The following four-equation log-linear artificial data generation process was created
using DAGER (see Hendry and Srba, 1980):

∆ct = −0.9 + 0.4 ∆yt + 0.15 (y − c)t−1 − 0.9 ∆pt + ϵ1t (A2.1)

∆yt = −75.0 + 0.3 ∆ct + 0.25 (q − y)t−1 + 0.25 ∆qt + ϵ2t (A2.2)

∆pt = 0.3 + 0.7 ∆pt−1 + 0.08 (q − 1200)t−1 + ϵ3t (A2.3)

∆qt = 121.3− 0.1 qt−1 − 1.30 ∆pt−1 + ϵ4t (A2.4)

The {ϵit} were generated as IN
(
0, σ2

ii

)
where (σ11, σ22, σ33, σ44) = (1, 3, 0.25, 4)

with zero covariances. The variables are interpreted such that xt = 100 logXt (∀x).
The conditional latent roots of the dynamics for the ‘domestic’ economy (ct, yt) are
0.8±0.044i, so the modulus is 0.80 and the period 115 ‘quarters’, whereas for the world
economy (∆pt, qt) the roots are 0.8± 0.31i, with modulus 0.86 and period 17.2 ‘quar-
ters’. Data were generated for a sample supposed to represent 1953(1) to 1992(3), with
an ‘oil crisis’ in 1973(3). Thus, there were 159 observations on (ct, yt,∆pt, qt) with
an autonomous shock to the world economy intercepts (equations (A2.3) and (A2.4))
at observation 83. This shock left the system dynamics unaltered and only directly
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affected ∆pt and qt. The long-run equilibrium of the system was shifted from:

c = y − 6∆p− 6 [C = exp (−6∆p− 0.06)Y ]

y = q − 300 [Y = 0.05 Q]

with: ∆p = 1 [ṗ = 1% per quarter]
q = 1200 [Q = 162, 755]

to: ∆p = 2 [ṗ = 2% per quarter]
q = 1180 [Q = 133, 252]

Thus, ‘equilibrium’ inflation (ṗ) doubled and world output fell by about 18%. Cor-
rect modelling of the system necessitates different intercepts pre/post-1973(3) in equa-
tions (A2.3) and (A2.4). The structural break was included so that issues of predictive
failure would be meaningful (see Hendry, 1979).

To ease recognition of the variables, they were respectively named CONS, INC,
INFLAT and OUTPUT. Simultaneous equations estimation closely replicates these co-
efficients of the DGP and the long-run solutions. Note that estimating (A2.2) by OLS
yields a spectacular example of simultaneity bias and (A2.3) without the oil dummy
shows massive predictive failure. Also, (A2.1) by RLS indicates evidence of parame-
ter non-constancy owing to the change in the simultaneity bias at the oil crisis: most
mis-specifications also lead to predictive failure.



Appendix A3

Numerical Changes From Previous
Versions

A3.1 From version 12 to 13

• The degrees of freedom computation of some tests has changed:

PcGive ≤ 12 PcGive ≥ 13

ARCH test F(s, T − k − 2s) F(s, T − 2s)

Heteroscedasticity test F(s, T − s− 1− k) F(s, T − s− 1)

• Additional changes to the Heteroscedasticity test:
– Observations that have a residual that is (almost) zero are removed.
– When there are four or more equations, the vector Heteroscedasticity test is

based on the transformed residuals and omitting the cross-product. This keeps
the number of equations down to n (see Volume II).

– Unrestricted/fixed variables are now included in test (previously they were never
used in forming the squares or cross-products).

A3.2 From version 9 to 10

There are a only few minor changes: the RESET test now uses direct regression instead
of partioned inverse, resulting in small differences; the t-test for zero innovation mean
is now implemented as in the documentation; NLS standard errors are now based on the
information matrix; NLS AR test can be slightly different (as could the heteroscedas-
ticity tests when degrees of freedom differ); RALS ARCH test degrees of freedom now
use T after allowing for lagged residuals. The residual correlogram uses the more stan-
dard textbook definition now (i.e. in deviation from the full sample mean, instead of the
running mean).
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A3.3 From version 8 to 9
The major change is the adoption of the QR decomposition with partial pivoting to com-
pute OLS and IV estimates. There are also some minor improvements in accuracy, the
following tests are the most sensitive to such changes: encompassing, heteroscedastic-
ity and RESET. The heteroscedasticity tests could also differ in the number of variables
removed owing to singularity.

A3.4 From version 7 to 8
The numerical results generated by PcGive version 8 are unchanged from version 7,
apart from a marginal increase in accuracy of several diagnostic tests. Also, a new
version of the normality test is used now, which uses a small sample correction.
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