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Abstract

Google Flu Trends reports the current flu activity in the USdahon search activity
indicators. A recent letter to Nature reported how the moeed obtained from historical
search records.

Using internet search activity to improve short-term fass is an exciting new devel-
opment. The letter to Nature shows that it does indeed aoatful information. Recently,
however, there has been a dramatic increase in flu activityegidS — an episode that was
missed entirely by the Google Flu Trends model. It is shovwm thee Google Flu Trend fore-
casts can be robustified, and how the model can be improves .objective of the former
is to limit the duration of a forecast failure. The latter wischow the forecasts error can be
reduced significantly.

It turns out that a dynamic model with calendar effects hawlar forecast performance
as the robustified Google Trends model. Therefore, two éurthodels are built that use
Google Trends data. These improve on the model with calesftizats. The pooled model
is better still, so for the periods considered, search datarcdeed help with nowcasting.

keywords Autometrics, Autoregression, Google Flu Trends, Indicatiuration, Influenza-
like illness, Nowcasting, Robustified forecasts, Web dedata

1 Introduction

Recently, Google Inc. has started publishing aggregat¢al fda the volume of search on
two web sites: Google Insights for Seardjoégle.com/insights/searcland Google Trends
(google.com/trengs Weekly information on the search activity is availablenr 2004 onwards;
some additional information on the data is in Appendices A Bn Because the search data
is produced almost instantaneously, various researcless $tarted addressing the question

*Helpful comments from Kate Doornik, Marius Ooms, David Hgnahd Vivien Hendry are gratefully acknowl-
edged.



whether the new search data can be useful to shed light onutihent state of the economy
or public health.

Most economic time-series are published with a delay, ang stilh be subject to revision
for quite a while afterwards. An example is the productiorG&P data, which is important
for economic policy, but only available with a substantag.l In the U.S., e.g., the Bureau of
Economic Analysis published the final GDP figure for the 1strtgr of 2009 on 25 June 2009.
An initial estimate was produced a month earlier. There iscaving literature on estimating
current economic activity, i.e. predicting the presentnowcasting’ (for a recent contribution
see Castle, Fawcett and Hendry, 2009). Prediction maduatggys, and regional or disaggregate
data could be sources of contemporaneous information thaimprove the quality of nowcasts.
In addition, it is possible that search engine data relateddnomic activity may be an additional
source of information. Choi and Varian (2009) consider sesmomic examples.

A second area where nowcasting may be useful is in epidegyola June 2009 the World
Health Organization raised the pandemic alert level on ainBwenza virus (swine flu) to phase
6, indicating that a global pandemic is underway. For dis@asvention and health-care planning
it is important to know what the actual incidence of flu-rethilinesses is. There are several
official institutions at national and regional levels thallect the necessary statistics. But again,
this is published with some delay, although short compar@tonomic data: usually only a few
weeks. Because of the possibility of rapid spread of a neaustit could be useful to have more
timely information available. Again, search data may helfiltthe gap. Precisely this question
was addressed by Ginsberg, Mohebbi, Patel, Brammer, Sshohnd Brilliant (2009), and the
accompanying web site Google Flu Trendsdgle.com/FluTrends

The question whether search activity can provide more ateunformation on current ac-
tivity is very interesting. Unfortunately, most analysesfar have been let down by the crude
statistical methods that were employed. Google Flu Treads, has shown a massive forecast
failure in spring/summer 2009. The models presented betdwshow failure for a short period
of time, after which they get back on track. As a consequethay, have much better nowcast
performance than Google Flu Trends.

Section 2 briefly discusses the flu data, followed by an oeanaf the Google Flu Trends
model and web site (Sections 3 and 4). In Section 6 it is shosn their nowcasts can be
improved using robustified forecasts.

The first model presented in Section 5 is purely autoregressi does not do well in cap-
turing the annual cycle, but it shows how easy it is to outpenf Google Flu Trends. The
subsequent model (labelléd?2) includes calendar effects, which are derived from weekly a
holiday indicators. Section 7 explores two lines of reseaiite first is whether web search data
provides information beyond that encapsulated in mad2| The second is whether search data
alone is useful to capture the full annual dynamics. Poadeelcasts from these last two models
are also considered.



2 Flu Surveillance

Weekly flu activity and surveillance reports for the US areduced by the Centers for Disease
Control and Prevention (CDC, www.cdc.gov). Consultingwredb site on 2009-07-16, the most
up-to-date report on the CDC web site (see cdc.gov/flu/wéektlates to the week starting
Sunday 2009-06-28.The CDC reports that ‘During week 26 (June 28-July 4, 2008énza
activity decreased in the United States, however, there w@i higher levels of influenza-like
illness than is normal for this time of year.’

The variable of interest is thpercentage of visits for influenza-like illne@k1%). Using
the data provided by the CDC in the report for week 33, togaetlidn data from earlier reports,
we can produce a plot of the ILI percentage for the U.S. (asighted percentage of regional
counts), see Figure 1. This only differs from the CDC plotdhat calendar dates are used
instead of week numbers: some years have 53 weeks, and theh@miles years of 52 weeks
by introducing an artificial week 53 as the average of weekriaRla

Historically, flu has a low incidence during the summer, arahitoring used to cease for a
period during the summer (weeks 21 to 39). The current swinegdldemic shows a need for

continuous monitoring.
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Figure 1:Percentage of visits for influenza-like iliness (IL1%) reggal by US Outpatient ILI surveillance
network, national summary 2008-09 and previous two seaddresnational baseline is 2.4%.

3 The Google Flu Trends model

Ginsberget al. (2009) have the full Google search data base at their difpesiag about 50
million of the most common search queries. After taking thggtltransformation of all variables,
they compute, for nine regions of the US, the correlationsawh variable with the dependent
variable. Then, for each variable, an average is computed ttye nine regions based on the

1All dates are expressed in 1ISO year-month-day format. Whéarning to CDC weeks, we write year-Wweek,
e.g.: 2009-W26. CDC weeks start on Sunday, while Google&kiyedata starts on Monday. These are treated as
being the same.



Z-transformed correlation. Next, the variables are ord@cording to their correlation scores,
and the best fitting set in terms of out-of-sample fit is select

The best fitting set consists of 45 queries, and the seareix fiod these 45 (a single variable
now) is used as the explanatory variable for all nine regtogsther. So the final model has just
one right-hand side variable.
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Figure 2: Comparison of ILI% as reported by the CDC and the Google Fandrindicator. The bars
show the difference between the CDC data and Google Flu $rend

Figure 2 compares the target variable (ILI%) to the GoogleTFend indicator for the whole
US2 The correlation i%).92 for the first part of the sample (2003-10-05 to 2007-07-2@)tlie
next 42 observations (2007-07-29 to 2008-05-11) ii.#8. Both are in line with the numbers
reported in the Nature paper. However, there are long pexatth systematic errors: most peaks
are underestimated, and the model seems to break down deiypte 2008—2009 with over-
estimation for November/December and under-estimatimm fApril 2009. An immediate issue
is that correlation is an inappropriate way to measure #seperformance: two variables can be
far apart, but still highly correlated. The customary apgitg used below, is to assess the forecast
error using mean squared forecast error (MSE), or meanw#legoércentage error (MAPE).

4 Google Flu Trends web site

Google Flu Trends presents a real-time version of the masladldped by Ginsbergt al. (2009):
based on aggregated search data an indicator of flu actvidgmputed, and plotted as in Fig-
ure 3.

°The data are available frogoogle.com/flutrends
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Figure 3:U.S. flu activity, as reported by google.com/flutrendsl@mtlus/ on 2009-07-16.

5 Modelling Percentage of Visits for Influenza-like Iliness

We start by building a simple dynamic model for the logit of%, the percentage of visits for
influenza-like illness. This can provide a benchmark for panson with extended models and
Google Flu Trends. Appendix C discusses how the data wasctetl, and interpolated where
necessary.

The logit transformation is used to create an unboundederéingrinciple) and to stabilize
the variance:

100 — IL1%

The variable with the missing values filled in is called IgiLI

The initial model for the logit of ILI1% is purely autoregrés: the only explanatory variables
are the lagged dependent variable up to the 53rd lag. In thenak of another way to pick up
the annual cycle, it is necessary to allow for such long l&gslogous to Ginsbergt al. (2009),
we first estimate up to the end of the 2006-7 season. Estimitiap to 2007-06-24 (week 26)
usingAutometricé with reduction at%, outlier detection based on large residuals and without
lag presearch.

Autometrics adds dummy variables for 7 potential outlifiise retained lags in the selected
model arel, 6, 26, 52, 53. The coefficient on lag86 is only moderately significant compared to
the others, with a small coefficient. It may just have pick@dsome spurious effect, and the
selection is run again using just lags 1, 6, 52, 53 and lartjeeodetection with reduction at 1%.

logit(ILI%) = log (ﬁ) . (1)

3All computations are done with OxMetrics 6 and PcGive 13, ¢tgrand Doornik (2009).

4Autometrics, Doornik (2009), implements the generalfiecfic model selection approach developed by David
Hendry, see Hendry (1995) for the foundations. All estirdatedels are linear regression models. Autometrics is
particularly useful when variables are correlated, in \loase stepwise regression works very badly. The procedure
usually finds multiple candidate models, from which the fimaldel is chosen by an information criterion.



The selected model is labelléd 1 (standard errors are in parentheses):

1:1glLF, = 1.018 IglLI*, , — 0.118 IgILI*, , + 0.286 IgILI*, .,
(0.020) (0.016) (0.041)
—0.224 IgILI*, .3 — 0.162 + 6 dummies (2)
(0.042) (0.053)

7 = 0.124, R? = 0.960, T' = 350(2000-10-08 — 2007-06-24k = 11.

| [——lgiLi* —— Fitted value$

r |—t— Scaled residuals

2

Figure 4:Model M1 for the logit of ILI: actual and fitted (top) and residuals tioon).

o

The first lag is highly significant with a coefficient almosuedjto one; the sum of the au-
toregressive coeffients (896. The long lags capture the annual cycle. The residual dstgso
are good with some mild serial correlation (at 2.4% signifasg. The estimated model has
o = 12%, which is a substantial improvement over the origifial = 65%. The graphical
analysis from the model is in Figure 4. Mod#l1 will only serve as a baseline for comparison.

The data show signs of calendar effects, in particular a drdpl% after Christmas. The
next step is to extend the model, allowing for 73 additioraiables as listed in Table 1. The
Labor to Easter variables are included in the initial modelta the second lag, to allow for
a delayed impact. Many variables are linear combinationstioérs, but that does not affect
the model selection procedure (but we switch lag-preseaifth Lags 1 to 9 and 50 to 52 of
the dependent variable are used in the initial model, whielnefore has 85 variables to select
from. Several terminal candidate models are found, whitfierdin the chosen lag lenghts and
the calendar effects. Using the one with only lags 1, 2, anfltheodependent variable, and

5The standard error of the residual is denoted?? is the adjusted R-squared, the sample size, ank the
number of regressors. The standard error of the dependdableais denoted,; this is the same a8 when
regressing the dependent variable on an intercept only.



Name Description Count

Labor first week of September 3
Autumn first week of October 3
ThanksGiving week of Thanksgiving Day 3
Christmas week with December 25th 3
Washington week of Washington’s Birthday 3
Spring first week of April 3
Easter week of Easter 3
weekl —week52 indicators for each week 52
Total added 73

Table 1: Calendar effects considered in the model

reselecting from the 73 calendar effects suggests theafmipsimplification:

Holidaysl = ThanksGiving— Christmag. o,

Holidays2 = —Washington , + Easter — Easter_; — Spring — Spring_,,
Winter, = week50 + week51 + week52 + week3 + ... + weekg + éweekz,
Summer = week23 + week25 + week27 + week29 + week31.

There is an increase in ILI% when school starts (usually teeknof Labor day), but this is
offset the week before and afterwards. There is a similarfiggtein the first week of October
(‘Autumn’), largely offsetting a downward effect the weesfbre. This is reasonably significant,
but omitted from the model. Next, there are similar increaeghe week of Thanksgiving Day
and Easter. The Easter effect is offset the next period. diitiad, there is a drop after the week
of Washington'’s birthday, which usually coincides with timéd-winter recess, and Spring (or
perhaps lagged from the week before, with the reductionéwipg afterwards — so all negative
effects happen immediately after school holidays). Spaimg) Easter are usually associated with
the spring break. Similarly, there is an increase in ILI ie thinter, partially reduced by the
delayed effect of the Christmas holidays. The summer effequite peculiar, but could be
caused by the interpolation for some years, or the methodtafabllection.

Rerunning the reduced model with these additiorigatadding dummies for large residuals
produces model/2:

M2 :IglLI*, = 0.864 IgILI*,_, + 0.141 gLl ,_, — lgILI* ,_]
(0.012) (0.016)
+ 0.144 Holidaysl + 0.203 Winter, + 0.090 Holidays2
(0.028) (0.018) (0.018) (3)
— 0.130 Summer — 0.597 + 7 dummies
(0.021) (0.053)

o = 0.103, R? = 0.972, T = 350(2000-10-08 — 2007-06-24k = 14.

One of the dummies is for November 2003. All the diagnosttstéor this model are fine.
The autoregressive parameters in (3) add to unity, and Mbte(like M1 before) is really a

7
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Figure 5: Dynamic forecasts for the logit of ILI%: 4-year aheer anteforecasts from 2007-W27
onwards.

model for the differences:

AlgILI*, = —0.604 — 0.138 [lgILI*, , —IgILI*, , +IgILI*, (]
(0.048) (0.011)
+4 calendar effects- 7 dummies (4)

o = 0.103, R? = 0.575, T = 350(2000-10-08 — 2007-06-24k = 13.

In addition, using logarithms instead of logits would betwally the same, so the models are
effectively for the percentage change in ILI1%. The MAPE'articular would be very much
bigger if expressed relative to the first differences. datiens, as used by Ginsbesj al.
(2009), will be considerably lower (as signalled by the afeaim =2).

The four-year ahead forecasts of models (2) and (3) are iwr&i§. The dynamic forecasts
show the long-term cycle. The forecasts of the model withcilendar variables captures sea-
sonal effects, as well as some asymmetry in the cycle. Theéesudnd unprecedented increase
in 2009-04-26 (week 17) is not anticipated by any model, asishbe expected. In practice,
slightly different variations of the weekly variables cdide found, but without much difference
in fit or forecast performance.

Both models can be used to forecast one year ahead, thetimates with a new year of
data (each time using the original dynamics), together sathction a.5% to add dummies for
outliers if necessary. These one year ahead ‘real-timetfsts can be transformed to undo the
logit transformatior?f:

ILI% = 100 [1 + exp (—logit(IL1%))] " . (5)

When comparing the current results to Google Flu Trends, ustnbe remembered that
Google Flu Trends is only designed to be two weeks ahead dfEe data, it cannot be used
to forecast further ahead. Therefore, the right metric timparison are the two and one-step
ahead forecasts. This is presented in Figure 6, where wearentipe Google Flu Trend results
with the two-step ahead forecasts /af2 and the actual outcomes. There is barely a need for

5We omit the bias correction for this transformation. Wa(li®87) gives an approximation to this, which, for
the range of data considered here, barely excedéds



summary statistics, because the difference is dramagcsithple)M 2 model is very much better
than Google Flu Trends. When there is a large unanticipdtadge, such as at the end of April
20009, it takes\/2 two periods to correct (one period for one-step ahead fetgavhile Google
Flu Trends never recovers. The reason is that the lattetadia siodel, while the former corrects
because it has access to the actual past outcomes.

Table 2 presents the root mean squared forecast errors (RMiSEnean absolute percentage
error (MAPE) for Google Flu Trends and modélsl and M2.” This confirms that the simple
autoregressive model is better, while modéP provides further improvement. The dynamic
forecasts (i.e. up to one year ahead)\¢2 are given for comparison, and actually manage to be
reasonably competitive with Google Flu Trends in 2008.

[| - ILI% [| -+ ILI% |- ILI%
[T-+—<- Google Flu Trend fUS) [T~ Google Flu Trend (US) T+ Google Flu Trend (US)
— 2008-09 H—— M2: 2009-10

(o2}
[e2]
(o2}

H—— M2: 2007-08 H— M2:

Figure 6: Two week ahead forecasts from model2 (with School and Winter), Google Flu Trend
estimates, and actual ILIM/2 models estimated up to 2007-W26 (left), 2008-W26 (middiej 2009-
W26.

6 Robustifying Google Flu Trends

The Google Flu Trend nowcasts are only useful for two weekfierAwo weeks the actual
ILI percentages are known (perhaps subject to some min@ioeg). Because the Google Flu
Trend model uses actual search volumes, it cannot proelkiemteforecasts, unless the search
index is predicted. One insight from the estimated dynanodeis is that the logit of IL1% is
close to a random walk (i.e. the changes are very much closehite noise). This explains
why it is difficult to forecast the winter peaks (a clear fadwf Google Flu Trends), and why a
sudden shock persists, as seen at the end of April 2009 (cpasong period of forecast failure
for Google Flu Trends). The two-step ahead forecasts framdimamic model are effectively
insured: for two or more periods ago it has access to the ladtte, allowing it to ‘self-correct’.
Hendry (2006) shows how forecasts in a non-stationary waitld breaks can be robustified:
use Google Flu Trends to estimate the change for the currehpeevious period, then apply

"The number of forecasts used for each year is reduced froreé&lise of missing Flu Trend forecasts or 1L1%
outcomes. All forecast statistics are given for 52-weekyesee Appendix C.

9



Google Flu Trend

M1

1-step 2-step

M?2

1l-step 2-step dynami

[¢)

2007 Week 27 — 2008 Week 20 (46 forecasts)

RMSE
MAPE

RMSE
MAPE

RMSE
MAPE

0.58 030 054| 022 0.36 0.82
18 9 12 7 10 16
2008 Week 42 — 2009 Week 26 (37 forecasts)
0.63 034 046| 032 041 0.65
30 10 14 10 12 30
2009 Week 27 — 2009 Week 33 (7 forecasts)
0.80 0.13 0.17| 0.14 0.18 0.30
65 8 11 10 12 20

Table 2: Forecast statistics for ILI of Google Flu Trends amatlels)/ 1 and M 2.

this to the actual outcomes. L&t denote the Google Flu Trend nowcasts and thé actual ILI
percentages (only known up to two periods ago), then:

L, ., =
i, =

ILl; o+ (Fy_y — Fy_y),

ILl,_s + (F, — Fs).

(6)

It seems preferable to apply this approach to the logit foangation, after which the anti-logit

(5) can be taken:

logit ILI,_,
logitILI, =

logit ILI,_, + (logitF,_; — logitF;_s),
logit ILI,_, + (logitF; — logitF;_5) .

(7)

Table 3 shows how much (6) and (7) improve on the original Goétu Trends nowcasts.
Model M2 is now just beaten in 2008 on RMSE, but not on MAPE. Indeedsaaliinspection
of the two-step forecasts from (7), see Figure 7, shows Heahéw approach corrects after two
periods, unlike the original Flu Trends, which can go wrooigef long time. However, comparing
Figure 7 to Figure 6 confirms a preference for matiel, as borne out by the MAPEs.

Table 3 also reports the pooled forecasts/it and robustified Google Flu Trends. This is
based on the average of the logit forecasts, after whichotiettansformation is undone.

10



Google Robustified Google Flu Trends
Flu Trends levels logits pooled with)M 2
1l-step 2-step 1-step 2-step 1-step 2-step
2007 Week 27 — 2008 Week 20 (46 forecasts)
RMSE 0.58 0.26 037 0.29 0.38| 0.19 0.27
MAPE 18 10 12 11 13 7 8
2008 Week 42 — 2009 Week 26 (37 forecasts)
RMSE 0.63 0.34 040| 0.32 0.38| 0.30 0.37
MAPE 30 14 16 12 15 10 11
2009 Week 27 — 2009 Week 33 (7 forecasts)
RMSE 0.80 0.09 0.12| 0.05 0.06| 0.09 0.11
MAPE 65 5 9 3 4 7 7

Table 3: Forecast statistics for IL1% of Google Flu Trendd avbustified nowcasts; levels cor-
responds to (6), logits to (7). The pooled model takes thesgeeof the logit forecasts

——— [LI%
—~—- Google Flu Trend (US)
—— Robustified Google Flu Trend

(o2}

H‘Jn'f]ﬁl””Jan‘wJun “““ Jan ., . | .
2008 2008 2009 2009 2010

2007

Figure 7: Google Flu Trend estimates, the robustified nowcasts (basddgits, see (7)), and actual
IL1%.
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7 Modelling IL1% with Google Trends

The CDC web site lists the following flu symptoms:
e Fever (usually high)
e Headache
e Tiredness (can be extreme)
e Cough
e Sore throat
e Runny or stuffy nose
e Body aches
e Diarrhea and vomiting (more common among children thantagul

We now investigate whether there is some benefit for one anestep forecasting from
adding Google Trend variables to the model. For this purposaised the flu symptoms as
search terms. There is not enough search volume for thedqagty on diarrhea and vomiting,
so these were done as separate terms. An additional fourl#itedeand five holiday related
gueries were added to the set of potential variables. Thddyolariables could be important,
given the influence of holiday effects found earlier. Theialales are listed in Table 4, and
plotted in Figures 8 and 9. Tiredness peaks in the summekeumlost others. Vomiting has a
strong peak in the week of Christmas, next to an upward treath of which seem unrelated
to flu prevalence (c.f. Figs. 4 and 5). Similar patterns ingkplanatory variables might induce
extra calendar effects or trend terms in the regression mddeour analysis extra effects in
relation with calendar effects and trends in the extra exgilary variables were not significant.
Flu symptoms is mostly flat, except for a pronounced peak 09%018 and W19 (last week of
April, first week of May). If selected, this could have a laiggact on the forecasts.

Flu symptoms Other flu Holiday terms
body aches cold remedy child care
cough flu remedy | homework
diarrhea flu symptoms kids camp
headache flu vaccine | school holidays
high fever Walt Disney
runny nose

sore throat

tiredness

vomiting

Table 4: Search terms used in the extended model

12



2.

[ — body_acheb M\ | — couglj 20— diarrheé /
[ | WW”« wwi.“ﬂ;‘m 1.5+ In \"\ N [ \.\‘M"
1r “q /W«J,‘\ h«,qrw‘"“wv”ﬂf‘w W Lok 4 "\,\ # ”\ / 15 e “\m/‘““‘ i)
i | ‘H VW Lo W”’* p
[ I B R B [ )
2004 2006 2008 2004 2006 2008
14— headachp ” " 2_0{* high_fevef ‘\“
" r I
1.2- | 18- o
i i : A f I
[ V ‘Mﬂ“ \“‘v“\ M Al m\‘ J \W W ‘” 1 07 urw " A w LJ ‘h\,,tmm,,ﬁj‘ \”"“uw ;‘r“ W
1'0%5'\[ | Myw‘ W V‘ . [ J
2004 2006 2008 2004 2006 2008 2004 2006 2008
2. — sore_throat . W 15 || — tirednes: ~ \ | 17 t{—— vomiting | ‘
[ (W) | I Al - \
1.5- L) LS I \WL\‘ M‘!W M 150 4 J‘, "
. ™ "\ A \‘W\ L ’ M, | f‘v ) ;\ [ ‘\ JH | 4Y W 1.25- | ‘ (i It f
b A AR 1.004 \\ m M ,\ ﬂ (Y T TR AT Y W ¥
Loty W T i )V w\ "J! || zoghy, eyt B
Oy T 0.75 A
wwwwwwwwwwwwwwwwwwww n wwwwwww\wwwwww P T [ T S S SR
2004 2006 2008 2004 2006 2008 2004 2006 2008
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Figure 9:SVI of other flu-related and holiday search terms.

The additional explanatory variables are added in logy (tle be larger than 100 in princi-
ple, although most are between zero and tivo).
The starting point is model/2, equation (3), without the dummy variables, but augmented
with the 18 search variables up to the first lag, so an additiB6 regressors. The intercept

8The body aches, cold remedy, and flu vaccine variables hawe geros in 2004. We replaced the zeros by
the 2004 average for body aches, and the minimum for the otfee(0.89, 0.25, 0.3 respectively) before taking

logarithms. Flu remedy, on the other hand, has genuine flerogghout the summer period; we added 0.01 to the
variable before taking the log.
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log of Dynamic model\/4 Static modelM/ 5
body aches = =
cough +/. +/. +/. J+ +/. +/.
high fever +/. +/. +/. | +/+ +/+ +/+
runny nose = = =
sore throat =

tiredness = = = —/. —/. —/.
vomiting +/—

cold remedy +/. +/. | +/+  +H/+ +/
flu symptoms +/. +/. +/.  +/+
flu vaccine —/. - =
child care J+

homework J+ +/. J+ J+
kids camp J+ J+ J+ J+

school holidays = =
Walt Disney +/. +/.
Dummies 9 15 9 31 43 50
o 0.0731 0.0698 0.0755 | 0.0805 0.0851 0.0820
Sample ends week 26 pf2007 2008 2009 2007 2008 2009

Table 5:M4: Sign of selected flu and holiday related search variabtes feoogle Trends. Sam-
ples starting 2004-01-18 and ending in week 26 of 2007, 20032809 respectively. Notation
is sign att/sign att — 1, with a dot indicating absence.

and the four calendar variables are always forced into thdetdut the two terms involving
lags of the dependent variable are allowed to be deselebled. Autometricsreduction is run

at 1% (2.5% for estimation up to 2007-W26), with indicator saturati@o, there are” + 38
variables to select froh.The estimated models are given in Table 5, with the repoiitditnto
the signs of the selected search variables. For examplentana +/. for cough means that
log(cough, has a positive sign, and thiag(cough,_; is not in the model. There is a difference
in the variables that are selected, although the signs ararkably consistent between samples
and models. The residual diagnostics for all models sugherassumption of independent and
normally distributed errors.

Most selected variables relate to flu symptoms, with couggh fever and tiredness se-
lected throughout. Tiredness has the opposite cycle to othsts, and enters with a negative
sign. Vomiting and sore throat are quite marginal wherecsete From the remaining search
terms, cold remedy, child care and kids camp are the mostriantaones in model/4. Essen-
tially the same forecast performance /sl is achieved if onlylog(cough,, log(tirednes$,_1,
log(child care,_; are used.

®Indicator saturation is a method of robust estimation whibbws for simultaneous model selection and ro-
bustness. See Hendry, Johansen and Santos (2008) andelohadNielsen (2009); Doornik (2008) discusses the
method implemented in Autometrics.
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M?2 M4 M5 pooledM2 and M5

1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step
2007 Week 27 — 2008 Week 20 (46 forecasts)

RMSE| 0.22 0.36| 0.18 0.25| 0.24 0.33| 0.18 0.27

MAPE 7 10 7 10 10 13 8 9

2008 Week 42 — 2009 Week 26 (37 forecasts)

RMSE| 032 041] 031 0.39| 023 0.29| 0.22 0.26

MAPE | 10 12 10 13 9 12 7 9

Table 6: Forecast statistics for IL1% of modéls2 (autoregressive with calendar effectd)4
(autoregressive, calendar effects and Google Trends, ddtajwith Google Trends data only),
and M6 (pooledM 4 and M5).

The improvement in forecasting over moddl2 is not so easy to see in a graph, but the
summary statistics in Table 6 indicate thdt is an improvement ovet/2. However, it is not
better than the pooled forecastsid® and robustified Google Flu Trends, cf. Table 3.

As a closer analogue to Google Flu Trends, | estimate a mhdebnly relies on the search
index variables: the candidate variables consist of trer¢ept and the 18 search together with
their first lag'® Robust estimation using indicator saturatior &t% is used. More variables are
selected into model/5, consistently across samples, although to a lesser extetitd holiday
related search variables. Robustified forecasts are usetl io because it has no dynamics.
Finally, the pooled forecasts @2 and M5 are reported, using equal weights. In this case there
was a small benefit from combining in levels. These pooleddasts are easily the best of those
considered here for the 2008-09 season, with two-step RMSBVBAPE at least twice as good
as Google Flu Trends. For the 2007-08 season there is not bataleen)/4 and the pooled
M2+ M5, butin all cases the use of Google Trends data has improvétedorecasts from the
dynamic model\/2 which uses calendar effects only.

Table 7 shows what happens when Google Flu Trend estimatesdadied as an additional
regressor to modeld/2, M4 andM5. Itis never significant in/4. In the others it hasvalues
ranging from 3.8 to 2.1. Adding it td/2 makes the forecasts worse, showing the difference
from pooling with Google Flu Trends, which always gave anriovement.

8 Conclusions

The Google Flu Trends model is designed to fill the two weeklgdpeen the release of CDC'’s
flu report and the present. The objective is to show that keactivity data can be used to
estimate current levels of activity. The second objects/iprovide an early warning system
that can aide with planning and improve the state of publadthe Unfortunately, as was shown,
the estimates (i.e. forecasts of the two most recent weaklsjifto detect a recent large decrease

OModels with only the contemporaneous search indices wemetdkd, but considerably inferior to those with
one lag.
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Estimation up to

Model M2

Model M4

Model M5

2007-W26
2008-W26
2009-W26

0.127 (0.037)
0.132 (0.034)

0.054 (0.024)

0.017 (0.047)
0.030 (0.039)
-0.022 (0.029)

0.220 (0.066)
0.190 (0.062)
0.084 (0.040)

Table 7: Coefficients and (standard errors) on logit of Ged¢glu Trends when added as an
additional variable to model&/2, M4 and M5.

in flu activity. Even a simple autoregressive model was shtwhave better two-step ahead
forecasts than the Google Flu Trend estimates (as measyr&MISE and MAPE). A third
objective might be to provide forecasts for each state, sd@wer level of aggregation than the
CDC provides. However, this requires a good model at the mggeegate level before trying to
apply it at a disaggregate level.

Robustified forecasting, as detailed in Hendry (2006) tdimng to be a very useful procedure
in this case. For Google Flu Trends it almost halves the RMSEadl as the MAPE. | also used
it for the static model with search data, although the eifeobt quite so dramatic.

The primary purpuse of the purely autoregressive model aastve as a baseline. The next
stage was to build a serious model with calendar effects.Widekly terms could be condensed
into four variables: Winter (weeks 50 to 7, except for 1 andt@)p holiday variables and a
summer effect. This model has forecast performance thatgparable to Google Flu Trends.

Two additional models are formulated to investigate whet®arch engine data can help.
The search index for 18 terms and their first lag provided #tereled data base. Autometrics
was used again to select models from this large candidaté sigthamic and a static model was
developed, in both cases providing an improvement for the7 20hd 2008 nowcasts. Pooling
these two models did provide substantially better nowgastsearch data can indeed be useful.
It was found that search activity for ‘cough’, ‘high fevema ‘child care’/‘homework’ has a
positive impact on the percentage of visits for influenka-lliness, while ‘school holidays’ and
‘tiredness’ have a negative impact.
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A Google Trends

Figure 10 shows a typical graph that is produced by Googlad&eThe top shows the Search Volume
Index (SVI), based on a subset of Google’s search datab&ageSVI is available world-wide, by country
or for different regions, provided there was enough seaottnve. Currently this information is updated
daily. The bottom graph displays the news reference voluheenumber of times ‘car insurance’ appeared
in Google News stories. After registering, the SVI data i dinaph can be downloadéd!.
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Figure 10:Search volume index for search term ‘car insurance’ in tt& Produced by Google Trends
on 2009-07-16.

The SVI for regionr is constructed as follow’: First the percentage of the total search volume that

The news data can be downloaded from Google Insights focBeand this could perhaps be useful to control
for wide fluctions in the SVI for some terms.
2All dates are expressed in ISO year-month-day format: Y YMM-DD.

17



relates to the term is computed for every day for the speciBgibn. The search data in Figure 10 are
divided by the full sample mean to give the variable a meamefaver the displayed period. Google calls
this ‘relative scaling’ and reports the data with two dedsnarhe data that is used for modelling uses
‘fixed scaling’, i.e. scaled to the average for January 2@0dally, weekly observations are computed as
an average of the daily datd Figure 11 shows the two versions of the variables.

Using subscript- for daily data and for weekly data, and’ ,. for the search volume on terii in
regionr, with T~ ,. the total search volume:

T,T

V
search share S, , = T 7= 1,...,77T,

T,

Saturday 2004—01-31
. 11 1
fixed SVI s, =1L > 5., pe=a Y. Sen
Ko 3
T=Sunday 7=2004—01-01
Saturday T
relative SVI sf!. = %%R Z Sy plt = L Z Sy
T=Sunday =1

The fixed SVI cannot be computed whep = 0; the relative SVI has a mean of unity over the selected
sample. Both are positive, and, in principle, unbounded.

—— SVI car insurance (relative scaling)
-------- SVI car insurance (fixed scaling),

1.25;

Figure 11:Search Volume Index using relative and fixed scaling

Unfortunately, the Google Trends data is subject to remsidownloading the SVI with fixed scaling
for US car insurance on 2009-08-05 gives different obsemaifor the entire historical period, as the first
panel of Figure. 12 shows. The second panel shows the résilaan regressing the new generation of
the variable on the old generation. The shaded area cordsgo+2 standard errors. The correlation
between the two versions &97625. Such revisions hamper the use of Google Trends for statisti
modelling.

B Google Insights for Search

The search volume data are represented somewhat diffeen@oogle Insights for Search, as illustrated
in Figure 13. The plotted data is monthly, unlike Figure 16whver the downloadable data remains

13This is my hypothesis, based on the fact that standard earergiven for the weekly data.
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Figure 12: SVI for U.S. car insurance using fixed scaling, data for 20096 and 2009-08-05 (top
panel) and residuals of regressing the newer generationeoolder variable.

weekly. Now the data, labelled Web Search Volume, are sdpl¢dde maximum over the selected sample,
then multiplied by 100 and reported without any decimals:

Saturday
Web Search Volume s}, = %majto(gt ) E Sy
) T ’
T=Sunday

Web Search Volume: car insurance — 5

otals @
United States, 2004 - present e e | E—
Cateqories: Automative (50-75%, Finance & Insurance (0-10%), Local (0-10%], Travel (0-10%) , more .

Interest over time News headlines: Show Hide

Leam what these numbers mea;

. ' ' . i i ' ' i ' ' ' ' ' ' .
2004 2005 2006 2007 2008

Figure 13:Search volume index for search term ‘car insurance’ in tf& produced by Google Insights
for Search on 2009-08-05.

There is some discrepancy between the data reported by &doghds and Google Insights, which

exceeds the rounding errors, see Figure 14. Just like Gdogials, the data changes from day to day, as
illustrated in Figure 15.
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Figure 14:U.S. car insurance from Google Insights compared to Googledg, with the latter scaled as
in Insights.

— Insights
—— Insights (next day)

Figure 15:Car insurance data for 2009-08-05 and 2009-08-06 (top pandithe difference between the
two (bottom panel).

C Dataissues

The variable of interest is the %Weighted ILI from Sentined\Rders, as reported on the CDC web site.
The data for 2008-W40 to 2008-W29 are taken from the 2008-vép@rt; for 2006-W40 to 2008-W20
from the final report for the 2007-08 season; for 2003-W40a062W39 from the final data tables; For
1999-W40 to 2003-W20 (with no data for W21 to W39) from the @@® end report. The 2003-W21 to
2003-W39 data is taken as the reginal data, weighted by th2 @0pulation estimates from the Census
Bureau; this is very accurate.

The ILI data used for modelling starts in 1999-10-03, butelere gaps, as can be seen in Figure 16.
These gaps are during the summer (week 21 to 39) of 2000, 20038,and 2008, when the ILI1% is low.
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--------- IL1% (interpolation of missing summers)

Figure 16:1L1%, together with interpolated missing values.

For modelling purposes it is useful to ‘fill the gaps’. We disths follows. After taking the logit, compute
the average change for weeks 21 to 40 from years 2003 to 2088y £is to each year with missing data,
each time spreading the required total change (to makewitded week 40 the same as actual week 40)
evenly over the period. Finally, undo the logit transfonmato obtain the interpolated ILI%. The created
values are shown with a dotted line in Figure 16. This intkrjian is somewhat ad hoc, of course, but the
benefits of a larger sample are likely to outweigh the errat e make.

The data sample contains two years with 53 weeks (2003 art) 20@h week 53 starting on Sunday
28 December. Weeks 53 are removed from the sample by asgigifth to week 52 and 3/7th to week
one. This is the final data adjustment before modelling.
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