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Abstract

Google Flu Trends reports the current flu activity in the US based on search activity
indicators. A recent letter to Nature reported how the modelwas obtained from historical
search records.

Using internet search activity to improve short-term forecasts is an exciting new devel-
opment. The letter to Nature shows that it does indeed contain useful information. Recently,
however, there has been a dramatic increase in flu activity inthe US — an episode that was
missed entirely by the Google Flu Trends model. It is shown how the Google Flu Trend fore-
casts can be robustified, and how the model can be improved. The objective of the former
is to limit the duration of a forecast failure. The latter shows how the forecasts error can be
reduced significantly.

It turns out that a dynamic model with calendar effects has similar forecast performance
as the robustified Google Trends model. Therefore, two further models are built that use
Google Trends data. These improve on the model with calendareffects. The pooled model
is better still, so for the periods considered, search data can indeed help with nowcasting.

keywordsAutometrics, Autoregression, Google Flu Trends, Indicator saturation, Influenza-
like illness, Nowcasting, Robustified forecasts, Web search data

1 Introduction

Recently, Google Inc. has started publishing aggregated data for the volume of search on
two web sites: Google Insights for Search (google.com/insights/search) and Google Trends
(google.com/trends). Weekly information on the search activity is available from 2004 onwards;
some additional information on the data is in Appendices A and B. Because the search data
is produced almost instantaneously, various researchers have started addressing the question

∗Helpful comments from Kate Doornik, Marius Ooms, David Hendry and Vivien Hendry are gratefully acknowl-
edged.
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whether the new search data can be useful to shed light on the current state of the economy
or public health.

Most economic time-series are published with a delay, and may still be subject to revision
for quite a while afterwards. An example is the production ofGDP data, which is important
for economic policy, but only available with a substantial lag. In the U.S., e.g., the Bureau of
Economic Analysis published the final GDP figure for the 1st quarter of 2009 on 25 June 2009.
An initial estimate was produced a month earlier. There is a growing literature on estimating
current economic activity, i.e. predicting the present, or‘nowcasting’ (for a recent contribution
see Castle, Fawcett and Hendry, 2009). Prediction markets,surveys, and regional or disaggregate
data could be sources of contemporaneous information that may improve the quality of nowcasts.
In addition, it is possible that search engine data related to economic activity may be an additional
source of information. Choi and Varian (2009) consider someeconomic examples.

A second area where nowcasting may be useful is in epidemiology. In June 2009 the World
Health Organization raised the pandemic alert level on a newinfluenza virus (swine flu) to phase
6, indicating that a global pandemic is underway. For disease prevention and health-care planning
it is important to know what the actual incidence of flu-related illnesses is. There are several
official institutions at national and regional levels that collect the necessary statistics. But again,
this is published with some delay, although short compared to economic data: usually only a few
weeks. Because of the possibility of rapid spread of a new strain, it could be useful to have more
timely information available. Again, search data may help to fill the gap. Precisely this question
was addressed by Ginsberg, Mohebbi, Patel, Brammer, Smolinski and Brilliant (2009), and the
accompanying web site Google Flu Trends (google.com/FluTrends).

The question whether search activity can provide more accurate information on current ac-
tivity is very interesting. Unfortunately, most analyses so far have been let down by the crude
statistical methods that were employed. Google Flu Trends,e.g., has shown a massive forecast
failure in spring/summer 2009. The models presented below only show failure for a short period
of time, after which they get back on track. As a consequence,they have much better nowcast
performance than Google Flu Trends.

Section 2 briefly discusses the flu data, followed by an overview of the Google Flu Trends
model and web site (Sections 3 and 4). In Section 6 it is shown how their nowcasts can be
improved using robustified forecasts.

The first model presented in Section 5 is purely autoregressive. It does not do well in cap-
turing the annual cycle, but it shows how easy it is to outperform Google Flu Trends. The
subsequent model (labelledM2) includes calendar effects, which are derived from weekly and
holiday indicators. Section 7 explores two lines of research. The first is whether web search data
provides information beyond that encapsulated in modelM2. The second is whether search data
alone is useful to capture the full annual dynamics. Pooled forecasts from these last two models
are also considered.
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2 Flu Surveillance

Weekly flu activity and surveillance reports for the US are produced by the Centers for Disease
Control and Prevention (CDC, www.cdc.gov). Consulting theweb site on 2009-07-16, the most
up-to-date report on the CDC web site (see cdc.gov/flu/weekly/) relates to the week starting
Sunday 2009-06-28.1 The CDC reports that ‘During week 26 (June 28-July 4, 2009), influenza
activity decreased in the United States, however, there were still higher levels of influenza-like
illness than is normal for this time of year.’

The variable of interest is thepercentage of visits for influenza-like illness(ILI%). Using
the data provided by the CDC in the report for week 33, together with data from earlier reports,
we can produce a plot of the ILI percentage for the U.S. (as a weighted percentage of regional
counts), see Figure 1. This only differs from the CDC plots inthat calendar dates are used
instead of week numbers: some years have 53 weeks, and the CDChandles years of 52 weeks
by introducing an artificial week 53 as the average of week 52 and 1.

Historically, flu has a low incidence during the summer, and monitoring used to cease for a
period during the summer (weeks 21 to 39). The current swine flu epidemic shows a need for
continuous monitoring.
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Figure 1:Percentage of visits for influenza-like illness (ILI%) reported by US Outpatient ILI surveillance
network, national summary 2008-09 and previous two seasons. The national baseline is 2.4%.

3 The Google Flu Trends model

Ginsberget al. (2009) have the full Google search data base at their disposal, using about 50
million of the most common search queries. After taking the logit transformation of all variables,
they compute, for nine regions of the US, the correlations ofeach variable with the dependent
variable. Then, for each variable, an average is computed over the nine regions based on the

1All dates are expressed in ISO year-month-day format. When referring to CDC weeks, we write year-Wweek,
e.g.: 2009-W26. CDC weeks start on Sunday, while Google’s weekly data starts on Monday. These are treated as
being the same.
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Z-transformed correlation. Next, the variables are ordered according to their correlation scores,
and the best fitting set in terms of out-of-sample fit is selected.

The best fitting set consists of 45 queries, and the search index for these 45 (a single variable
now) is used as the explanatory variable for all nine regionstogether. So the final model has just
one right-hand side variable.
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Figure 2: Comparison of ILI% as reported by the CDC and the Google Flu Trend indicator. The bars
show the difference between the CDC data and Google Flu Trends.

Figure 2 compares the target variable (ILI%) to the Google Flu Trend indicator for the whole
US.2 The correlation is0.92 for the first part of the sample (2003-10-05 to 2007-07-22), for the
next 42 observations (2007-07-29 to 2008-05-11) it is0.98. Both are in line with the numbers
reported in the Nature paper. However, there are long periods with systematic errors: most peaks
are underestimated, and the model seems to break down completely in 2008–2009 with over-
estimation for November/December and under-estimation from April 2009. An immediate issue
is that correlation is an inappropriate way to measure forecast performance: two variables can be
far apart, but still highly correlated. The customary approach, used below, is to assess the forecast
error using mean squared forecast error (MSE), or mean absolute percentage error (MAPE).

4 Google Flu Trends web site

Google Flu Trends presents a real-time version of the model developed by Ginsberget al.(2009):
based on aggregated search data an indicator of flu activity is computed, and plotted as in Fig-
ure 3.

2The data are available fromgoogle.com/flutrends.
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Figure 3:U.S. flu activity, as reported by google.com/flutrends/intl/en us/ on 2009-07-16.

5 Modelling Percentage of Visits for Influenza-like Illness

We start by building a simple dynamic model for the logit of ILI%, the percentage of visits for
influenza-like illness. This can provide a benchmark for comparison with extended models and
Google Flu Trends. Appendix C discusses how the data was collected, and interpolated where
necessary.3

The logit transformation is used to create an unbounded range (in principle) and to stabilize
the variance:

logit(ILI%) = log

(
ILI%

100 − ILI%

)
. (1)

The variable with the missing values filled in is called lgILI*.
The initial model for the logit of ILI% is purely autoregressive: the only explanatory variables

are the lagged dependent variable up to the 53rd lag. In the absence of another way to pick up
the annual cycle, it is necessary to allow for such long lags.Analogous to Ginsberget al.(2009),
we first estimate up to the end of the 2006-7 season. Estimation is up to 2007-06-24 (week 26)
usingAutometrics4 with reduction at5%, outlier detection based on large residuals and without
lag presearch.

Autometrics adds dummy variables for 7 potential outliers.The retained lags in the selected
model are1, 6, 26, 52, 53. The coefficient on lags26 is only moderately significant compared to
the others, with a small coefficient. It may just have picked up some spurious effect, and the
selection is run again using just lags 1, 6, 52, 53 and large outlier detection with reduction at 1%.

3All computations are done with OxMetrics 6 and PcGive 13, Hendry and Doornik (2009).
4Autometrics, Doornik (2009), implements the general-to-specific model selection approach developed by David

Hendry, see Hendry (1995) for the foundations. All estimated models are linear regression models. Autometrics is
particularly useful when variables are correlated, in which case stepwise regression works very badly. The procedure
usually finds multiple candidate models, from which the finalmodel is chosen by an information criterion.
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The selected model is labelledM1 (standard errors are in parentheses):5

M1 : ̂lgILI* t = 1.018
(0.020)

lgILI* t−1 − 0.118
(0.016)

lgILI* t−6 + 0.286
(0.041)

lgILI* t−52

− 0.224
(0.042)

lgILI* t−53 − 0.162
(0.053)

+ 6 dummies,

σ̂ = 0.124, R̄2 = 0.960, T = 350(2000-10-08 – 2007-06-24), k = 11.

(2)
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Figure 4:ModelM1 for the logit of ILI: actual and fitted (top) and residuals (bottom).

The first lag is highly significant with a coefficient almost equal to one; the sum of the au-
toregressive coeffients is0.96. The long lags capture the annual cycle. The residual diagnostics
are good with some mild serial correlation (at 2.4% significance). The estimated model has
σ̂ = 12%, which is a substantial improvement over the originalσ̂y = 65%. The graphical
analysis from the model is in Figure 4. ModelM1 will only serve as a baseline for comparison.

The data show signs of calendar effects, in particular a dropin ILI% after Christmas. The
next step is to extend the model, allowing for 73 additional variables as listed in Table 1. The
Labor to Easter variables are included in the initial model up to the second lag, to allow for
a delayed impact. Many variables are linear combinations ofothers, but that does not affect
the model selection procedure (but we switch lag-presearchoff). Lags 1 to 9 and 50 to 52 of
the dependent variable are used in the initial model, which therefore has 85 variables to select
from. Several terminal candidate models are found, which differ in the chosen lag lenghts and
the calendar effects. Using the one with only lags 1, 2, and 6 of the dependent variable, and

5The standard error of the residual is denotedσ̂, R̄2 is the adjusted R-squared,T the sample size, andk the
number of regressors. The standard error of the dependent variable is denoted̂σy; this is the same aŝσ when
regressing the dependent variable on an intercept only.
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Name Description Count
Labor first week of September 3
Autumn first week of October 3
ThanksGiving week of Thanksgiving Day 3
Christmas week with December 25th 3
Washington week of Washington’s Birthday 3
Spring first week of April 3
Easter week of Easter 3
week1 – week52 indicators for each week 52

Total added 73

Table 1: Calendar effects considered in the model

reselecting from the 73 calendar effects suggests the following simplification:

Holidays1t = ThanksGivingt − Christmast−2,
Holidays2t = −Washingtont−1 + Eastert − Eastert−1 − Springt − Springt−1,
Wintert = week50t + week51t + week52t + week3t + . . . + week6t + 1

2
week7t,

Summert = week23t + week25t + week27t + week29t + week31t.

There is an increase in ILI% when school starts (usually the week of Labor day), but this is
offset the week before and afterwards. There is a similar up effect in the first week of October
(‘Autumn’), largely offsetting a downward effect the week before. This is reasonably significant,
but omitted from the model. Next, there are similar increases in the week of Thanksgiving Day
and Easter. The Easter effect is offset the next period. In addition, there is a drop after the week
of Washington’s birthday, which usually coincides with themid-winter recess, and Spring (or
perhaps lagged from the week before, with the reduction happening afterwards — so all negative
effects happen immediately after school holidays). Springand Easter are usually associated with
the spring break. Similarly, there is an increase in ILI in the winter, partially reduced by the
delayed effect of the Christmas holidays. The summer effectis quite peculiar, but could be
caused by the interpolation for some years, or the method of data collection.

Rerunning the reduced model with these additions at5%, adding dummies for large residuals
produces modelM2:

M2 : ̂lgILI* t = 0.864
(0.012)

lgILI* t−1 + 0.141
(0.016)

[
lgILI* t−2 − lgILI* t−6

]

+ 0.144
(0.028)

Holidays1t + 0.203
(0.018)

Wintert + 0.090
(0.018)

Holidays2t

− 0.130
(0.021)

Summert − 0.597
(0.053)

+ 7 dummies,

σ̂ = 0.103, R̄2 = 0.972, T = 350(2000-10-08 – 2007-06-24), k = 14.

(3)

One of the dummies is for November 2003. All the diagnostic tests for this model are fine.
The autoregressive parameters in (3) add to unity, and ModelM2 (like M1 before) is really a
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Figure 5: Dynamic forecasts for the logit of ILI%: 4-year aheadex anteforecasts from 2007-W27
onwards.

model for the differences:

̂∆lgILI* t = −0.604
(0.048)

− 0.138
(0.011)

[
lgILI* t−1 − lgILI* t−2 + lgILI* t−6

]

+4 calendar effects+ 7 dummies,

σ̂ = 0.103, R̄2 = 0.575, T = 350(2000-10-08 – 2007-06-24), k = 13.

(4)

In addition, using logarithms instead of logits would be virtually the same, so the models are
effectively for the percentage change in ILI%. The MAPE’s inparticular would be very much
bigger if expressed relative to the first differences. Correlations, as used by Ginsberget al.
(2009), will be considerably lower (as signalled by the change inR̄2).

The four-year ahead forecasts of models (2) and (3) are in Figure 5. The dynamic forecasts
show the long-term cycle. The forecasts of the model with thecalendar variables captures sea-
sonal effects, as well as some asymmetry in the cycle. The sudden and unprecedented increase
in 2009-04-26 (week 17) is not anticipated by any model, as should be expected. In practice,
slightly different variations of the weekly variables could be found, but without much difference
in fit or forecast performance.

Both models can be used to forecast one year ahead, then re-estimated with a new year of
data (each time using the original dynamics), together withselection at2.5% to add dummies for
outliers if necessary. These one year ahead ‘real-time’ forecasts can be transformed to undo the
logit transformation:6

ILI% = 100 [1 + exp (−logit(ILI%))]−1 . (5)

When comparing the current results to Google Flu Trends, it must be remembered that
Google Flu Trends is only designed to be two weeks ahead of theCDC data, it cannot be used
to forecast further ahead. Therefore, the right metric for comparison are the two and one-step
ahead forecasts. This is presented in Figure 6, where we compare the Google Flu Trend results
with the two-step ahead forecasts ofM2 and the actual outcomes. There is barely a need for

6We omit the bias correction for this transformation. Wallis(1987) gives an approximation to this, which, for
the range of data considered here, barely exceeds0.01.
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summary statistics, because the difference is dramatic: the simpleM2 model is very much better
than Google Flu Trends. When there is a large unanticipated change, such as at the end of April
2009, it takesM2 two periods to correct (one period for one-step ahead forecasts), while Google
Flu Trends never recovers. The reason is that the latter is a static model, while the former corrects
because it has access to the actual past outcomes.

Table 2 presents the root mean squared forecast errors (RMSE) and mean absolute percentage
error (MAPE) for Google Flu Trends and modelsM1 andM2.7 This confirms that the simple
autoregressive model is better, while modelM2 provides further improvement. The dynamic
forecasts (i.e. up to one year ahead) ofM2 are given for comparison, and actually manage to be
reasonably competitive with Google Flu Trends in 2008.
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Figure 6: Two week ahead forecasts from modelM2 (with School and Winter), Google Flu Trend
estimates, and actual ILI.M2 models estimated up to 2007-W26 (left), 2008-W26 (middle) and 2009-
W26.

6 Robustifying Google Flu Trends

The Google Flu Trend nowcasts are only useful for two weeks. After two weeks the actual
ILI percentages are known (perhaps subject to some minor revisions). Because the Google Flu
Trend model uses actual search volumes, it cannot produceex anteforecasts, unless the search
index is predicted. One insight from the estimated dynamic models is that the logit of ILI% is
close to a random walk (i.e. the changes are very much closer to white noise). This explains
why it is difficult to forecast the winter peaks (a clear failure of Google Flu Trends), and why a
sudden shock persists, as seen at the end of April 2009 (causing a long period of forecast failure
for Google Flu Trends). The two-step ahead forecasts from the dynamic model are effectively
insured: for two or more periods ago it has access to the actual data, allowing it to ‘self-correct’.

Hendry (2006) shows how forecasts in a non-stationary worldwith breaks can be robustified:
use Google Flu Trends to estimate the change for the current and previous period, then apply

7The number of forecasts used for each year is reduced from 52 because of missing Flu Trend forecasts or ILI%
outcomes. All forecast statistics are given for 52-week years, see Appendix C.
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Google Flu Trend M1 M2
1-step 2-step 1-step 2-step dynamic

2007 Week 27 – 2008 Week 20 (46 forecasts)
RMSE 0.58 0.30 0.54 0.22 0.36 0.82
MAPE 18 9 12 7 10 16

2008 Week 42 – 2009 Week 26 (37 forecasts)
RMSE 0.63 0.34 0.46 0.32 0.41 0.65
MAPE 30 10 14 10 12 30

2009 Week 27 – 2009 Week 33 (7 forecasts)
RMSE 0.80 0.13 0.17 0.14 0.18 0.30
MAPE 65 8 11 10 12 20

Table 2: Forecast statistics for ILI of Google Flu Trends andmodelsM1 andM2.

this to the actual outcomes. LetFt denote the Google Flu Trend nowcasts and ILIt the actual ILI
percentages (only known up to two periods ago), then:

ĨLI t−1 = ILI t−2 + (Ft−1 − Ft−2) ,

ĨLI t = ILI t−2 + (Ft − Ft−2) .
(6)

It seems preferable to apply this approach to the logit transformation, after which the anti-logit
(5) can be taken:

˜logit ILI t−1 = logit ILI t−2 + (logitFt−1 − logitFt−2) ,
˜logit ILI t = logit ILI t−2 + (logitFt − logitFt−2) .

(7)

Table 3 shows how much (6) and (7) improve on the original Google Flu Trends nowcasts.
ModelM2 is now just beaten in 2008 on RMSE, but not on MAPE. Indeed, a visual inspection
of the two-step forecasts from (7), see Figure 7, shows that the new approach corrects after two
periods, unlike the original Flu Trends, which can go wrong for a long time. However, comparing
Figure 7 to Figure 6 confirms a preference for modelM2, as borne out by the MAPEs.

Table 3 also reports the pooled forecasts ofM2 and robustified Google Flu Trends. This is
based on the average of the logit forecasts, after which the logit transformation is undone.
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Google Robustified Google Flu Trends
Flu Trends levels logits pooled withM2

1-step 2-step 1-step 2-step 1-step 2-step
2007 Week 27 – 2008 Week 20 (46 forecasts)

RMSE 0.58 0.26 0.37 0.29 0.38 0.19 0.27
MAPE 18 10 12 11 13 7 8

2008 Week 42 – 2009 Week 26 (37 forecasts)
RMSE 0.63 0.34 0.40 0.32 0.38 0.30 0.37
MAPE 30 14 16 12 15 10 11

2009 Week 27 – 2009 Week 33 (7 forecasts)
RMSE 0.80 0.09 0.12 0.05 0.06 0.09 0.11
MAPE 65 5 9 3 4 7 7

Table 3: Forecast statistics for ILI% of Google Flu Trends and robustified nowcasts; levels cor-
responds to (6), logits to (7). The pooled model takes the average of the logit forecasts
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Figure 7: Google Flu Trend estimates, the robustified nowcasts (basedon logits, see (7)), and actual
ILI%.
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7 Modelling ILI% with Google Trends

The CDC web site lists the following flu symptoms:

• Fever (usually high)

• Headache

• Tiredness (can be extreme)

• Cough

• Sore throat

• Runny or stuffy nose

• Body aches

• Diarrhea and vomiting (more common among children than adults)

We now investigate whether there is some benefit for one and two-step forecasting from
adding Google Trend variables to the model. For this purposewe used the flu symptoms as
search terms. There is not enough search volume for the jointquery on diarrhea and vomiting,
so these were done as separate terms. An additional four flu related and five holiday related
queries were added to the set of potential variables. The holiday variables could be important,
given the influence of holiday effects found earlier. The variables are listed in Table 4, and
plotted in Figures 8 and 9. Tiredness peaks in the summer, unlike most others. Vomiting has a
strong peak in the week of Christmas, next to an upward trend,both of which seem unrelated
to flu prevalence (c.f. Figs. 4 and 5). Similar patterns in theexplanatory variables might induce
extra calendar effects or trend terms in the regression model. In our analysis extra effects in
relation with calendar effects and trends in the extra explanatory variables were not significant.
Flu symptoms is mostly flat, except for a pronounced peak in 2009W18 and W19 (last week of
April, first week of May). If selected, this could have a largeimpact on the forecasts.

Flu symptoms Other flu Holiday terms
body aches cold remedy child care
cough flu remedy homework
diarrhea flu symptomskids camp
headache flu vaccine school holidays
high fever Walt Disney
runny nose
sore throat
tiredness
vomiting

Table 4: Search terms used in the extended model
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Figure 8:SVI of flu-symptom search terms.
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Figure 9:SVI of other flu-related and holiday search terms.

The additional explanatory variables are added in logs (they can be larger than 100 in princi-
ple, although most are between zero and two).8

The starting point is modelM2, equation (3), without the dummy variables, but augmented
with the 18 search variables up to the first lag, so an additional 36 regressors. The intercept

8The body aches, cold remedy, and flu vaccine variables have some zeros in 2004. We replaced the zeros by
the 2004 average for body aches, and the minimum for the othertwo (0.89, 0.25, 0.3 respectively) before taking
logarithms. Flu remedy, on the other hand, has genuine zerosthroughout the summer period; we added 0.01 to the
variable before taking the log.
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log of Dynamic modelM4 Static modelM5
body aches ./− ./−
cough +/. +/. +/. ./+ +/. +/.
high fever +/. +/. +/. +/+ +/+ +/+
runny nose ./− ./− ./−
sore throat ./−
tiredness ./− ./− ./− −/. −/. −/.
vomiting +/−
cold remedy +/. +/. +/+ +/+ +/.
flu symptoms +/. +/. +/. +/+
flu vaccine −/. ./− ./−
child care ./+
homework ./+ +/. ./+ ./+
kids camp ./+ ./+ ./+ ./+
school holidays ./− ./−
Walt Disney +/. +/.
Dummies 9 15 9 31 43 50
σ̂ 0.0731 0.0698 0.0755 0.0805 0.0851 0.0820
Sample ends week 26 of2007 2008 2009 2007 2008 2009

Table 5:M4: Sign of selected flu and holiday related search variables from Google Trends. Sam-
ples starting 2004-01-18 and ending in week 26 of 2007, 2008 and 2009 respectively. Notation
is sign att/sign att − 1, with a dot indicating absence.

and the four calendar variables are always forced into the model, but the two terms involving
lags of the dependent variable are allowed to be deselected.Now Autometricsreduction is run
at 1% (2.5% for estimation up to 2007-W26), with indicator saturation,so there areT + 38
variables to select from.9 The estimated models are given in Table 5, with the report limited to
the signs of the selected search variables. For example, an entry of +/. for cough means that
log(cough)t has a positive sign, and thatlog(cough)t−1 is not in the model. There is a difference
in the variables that are selected, although the signs are remarkably consistent between samples
and models. The residual diagnostics for all models supportthe assumption of independent and
normally distributed errors.

Most selected variables relate to flu symptoms, with cough, high fever and tiredness se-
lected throughout. Tiredness has the opposite cycle to mostothers, and enters with a negative
sign. Vomiting and sore throat are quite marginal where selected. From the remaining search
terms, cold remedy, child care and kids camp are the most important ones in modelM4. Essen-
tially the same forecast performance asM4 is achieved if onlylog(cough)t, log(tiredness)t−1,
log(child care)t−1 are used.

9Indicator saturation is a method of robust estimation whichallows for simultaneous model selection and ro-
bustness. See Hendry, Johansen and Santos (2008) and Johansen and Nielsen (2009); Doornik (2008) discusses the
method implemented in Autometrics.
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M2 M4 M5 pooledM2 andM5
1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step

2007 Week 27 – 2008 Week 20 (46 forecasts)
RMSE 0.22 0.36 0.18 0.25 0.24 0.33 0.18 0.27
MAPE 7 10 7 10 10 13 8 9

2008 Week 42 – 2009 Week 26 (37 forecasts)
RMSE 0.32 0.41 0.31 0.39 0.23 0.29 0.22 0.26
MAPE 10 12 10 13 9 12 7 9

Table 6: Forecast statistics for ILI% of modelsM2 (autoregressive with calendar effects),M4
(autoregressive, calendar effects and Google Trends data), M5 (with Google Trends data only),
andM6 (pooledM4 andM5).

The improvement in forecasting over modelM2 is not so easy to see in a graph, but the
summary statistics in Table 6 indicate thatM4 is an improvement overM2. However, it is not
better than the pooled forecasts ofM2 and robustified Google Flu Trends, cf. Table 3.

As a closer analogue to Google Flu Trends, I estimate a model that only relies on the search
index variables: the candidate variables consist of the intercept and the 18 search together with
their first lag.10 Robust estimation using indicator saturation at2.5% is used. More variables are
selected into modelM5, consistently across samples, although to a lesser extent for the holiday
related search variables. Robustified forecasts are used for M5, because it has no dynamics.
Finally, the pooled forecasts ofM2 andM5 are reported, using equal weights. In this case there
was a small benefit from combining in levels. These pooled forecasts are easily the best of those
considered here for the 2008-09 season, with two-step RMSE and MAPE at least twice as good
as Google Flu Trends. For the 2007-08 season there is not muchbetweenM4 and the pooled
M2 + M5, but in all cases the use of Google Trends data has improved onthe forecasts from the
dynamic modelM2 which uses calendar effects only.

Table 7 shows what happens when Google Flu Trend estimates are added as an additional
regressor to models,M2, M4 andM5. It is never significant inM4. In the others it hast-values
ranging from 3.8 to 2.1. Adding it toM2 makes the forecasts worse, showing the difference
from pooling with Google Flu Trends, which always gave an improvement.

8 Conclusions

The Google Flu Trends model is designed to fill the two week gapbetween the release of CDC’s
flu report and the present. The objective is to show that search activity data can be used to
estimate current levels of activity. The second objective is to provide an early warning system
that can aide with planning and improve the state of public health. Unfortunately, as was shown,
the estimates (i.e. forecasts of the two most recent weeks) failed to detect a recent large decrease

10Models with only the contemporaneous search indices were also tried, but considerably inferior to those with
one lag.
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Estimation up to ModelM2 ModelM4 ModelM5
2007-W26 0.127 (0.037) 0.017 (0.047) 0.220 (0.066)
2008-W26 0.132 (0.034) 0.030 (0.039) 0.190 (0.062)
2009-W26 0.054 (0.024) -0.022 (0.029) 0.084 (0.040)

Table 7: Coefficients and (standard errors) on logit of Google Flu Trends when added as an
additional variable to modelsM2, M4 andM5.

in flu activity. Even a simple autoregressive model was shownto have better two-step ahead
forecasts than the Google Flu Trend estimates (as measured by RMSE and MAPE). A third
objective might be to provide forecasts for each state, so ata lower level of aggregation than the
CDC provides. However, this requires a good model at the moreaggregate level before trying to
apply it at a disaggregate level.

Robustified forecasting, as detailed in Hendry (2006) turned out to be a very useful procedure
in this case. For Google Flu Trends it almost halves the RMSE as well as the MAPE. I also used
it for the static model with search data, although the effectis not quite so dramatic.

The primary purpuse of the purely autoregressive model was to serve as a baseline. The next
stage was to build a serious model with calendar effects. Theweekly terms could be condensed
into four variables: Winter (weeks 50 to 7, except for 1 and 2), two holiday variables and a
summer effect. This model has forecast performance that is comparable to Google Flu Trends.

Two additional models are formulated to investigate whether search engine data can help.
The search index for 18 terms and their first lag provided the extended data base. Autometrics
was used again to select models from this large candidate set. A dynamic and a static model was
developed, in both cases providing an improvement for the 2007 and 2008 nowcasts. Pooling
these two models did provide substantially better nowcasts, so search data can indeed be useful.
It was found that search activity for ‘cough’, ‘high fever’ and ‘child care’/‘homework’ has a
positive impact on the percentage of visits for influenza-like illness, while ‘school holidays’ and
‘tiredness’ have a negative impact.
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A Google Trends

Figure 10 shows a typical graph that is produced by Google Trends. The top shows the Search Volume
Index (SVI), based on a subset of Google’s search database. The SVI is available world-wide, by country
or for different regions, provided there was enough search volume. Currently this information is updated
daily. The bottom graph displays the news reference volume:the number of times ‘car insurance’ appeared
in Google News stories. After registering, the SVI data in the graph can be downloaded.11

Figure 10:Search volume index for search term ‘car insurance’ in the U.S. produced by Google Trends
on 2009-07-16.

The SVI for regionr is constructed as follows.12 First the percentage of the total search volume that

11The news data can be downloaded from Google Insights for Search, and this could perhaps be useful to control
for wide fluctions in the SVI for some terms.

12All dates are expressed in ISO year-month-day format: YYYY-MM-DD.
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relates to the term is computed for every day for the specifiedregion. The search data in Figure 10 are
divided by the full sample mean to give the variable a mean of one over the displayed period. Google calls
this ‘relative scaling’ and reports the data with two decimals. The data that is used for modelling uses
‘fixed scaling’, i.e. scaled to the average for January 2004.Finally, weekly observations are computed as
an average of the daily data.13 Figure 11 shows the two versions of the variables.

Using subscriptτ for daily data andt for weekly data, andVτ ,r for the search volume on termV in
regionr, with Tτ ,r the total search volume:

search shareSτ ,r =
Vτ ,r

Tτ ,r

, τ = 1, ..., 7T,

fixed SVI st,r =
1
7

1
µr

Saturday∑

τ=Sunday

Sτ,r, µr =
1
31

2004−01−31∑

τ=2004−01−01

Sτ ,r,

relative SVI sR
t,r =

1
7

1
µR

r

Saturday∑

τ=Sunday

Sτ ,r µR
r =

1
7T

7T∑

τ=1

Sτ,r.

The fixed SVI cannot be computed whenµr = 0; the relative SVI has a mean of unity over the selected
sample. Both are positive, and, in principle, unbounded.

SVI car insurance (relative scaling) 
SVI car insurance (fixed scaling) 

2004 2005 2006 2007 2008 2009

0.75

1.00

1.25

SVI car insurance (relative scaling) 
SVI car insurance (fixed scaling) 

Figure 11:Search Volume Index using relative and fixed scaling

Unfortunately, the Google Trends data is subject to revisions. Downloading the SVI with fixed scaling
for US car insurance on 2009-08-05 gives different observations for the entire historical period, as the first
panel of Figure. 12 shows. The second panel shows the residuals from regressing the new generation of
the variable on the old generation. The shaded area corresponds to±2 standard errors. The correlation
between the two versions is0.97625. Such revisions hamper the use of Google Trends for statistical
modelling.

B Google Insights for Search

The search volume data are represented somewhat differently on Google Insights for Search, as illustrated
in Figure 13. The plotted data is monthly, unlike Figure 10, however the downloadable data remains

13This is my hypothesis, based on the fact that standard errorsare given for the weekly data.
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car insurance (fixed scaling) 2009−07−16 
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Figure 12: SVI for U.S. car insurance using fixed scaling, data for 2009-07-16 and 2009-08-05 (top
panel) and residuals of regressing the newer generation on the older variable.

weekly. Now the data, labelled Web Search Volume, are scaledby the maximum over the selected sample,
then multiplied by 100 and reported without any decimals:

Web Search Volume s∗t,r =
1
7

100
maxt(st,r)

Saturday∑

τ=Sunday

Sτ ,r.

Figure 13:Search volume index for search term ‘car insurance’ in the U.S. produced by Google Insights
for Search on 2009-08-05.

There is some discrepancy between the data reported by Google Trends and Google Insights, which
exceeds the rounding errors, see Figure 14. Just like GoogleTrends, the data changes from day to day, as
illustrated in Figure 15.
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Figure 14:U.S. car insurance from Google Insights compared to Google Trends, with the latter scaled as
in Insights.
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Figure 15:Car insurance data for 2009-08-05 and 2009-08-06 (top panel) and the difference between the
two (bottom panel).

C Data issues

The variable of interest is the %Weighted ILI from Sentinel Providers, as reported on the CDC web site.
The data for 2008-W40 to 2008-W29 are taken from the 2008-W29report; for 2006-W40 to 2008-W20
from the final report for the 2007-08 season; for 2003-W40 to 2006-W39 from the final data tables; For
1999-W40 to 2003-W20 (with no data for W21 to W39) from the 2006-06 end report. The 2003-W21 to
2003-W39 data is taken as the reginal data, weighted by the 2002 population estimates from the Census
Bureau; this is very accurate.

The ILI data used for modelling starts in 1999-10-03, but there are gaps, as can be seen in Figure 16.
These gaps are during the summer (week 21 to 39) of 2000, 2001,2003 and 2008, when the ILI% is low.
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Figure 16:ILI%, together with interpolated missing values.

For modelling purposes it is useful to ‘fill the gaps’. We do this as follows. After taking the logit, compute
the average change for weeks 21 to 40 from years 2003 to 2008. Apply this to each year with missing data,
each time spreading the required total change (to make interpolated week 40 the same as actual week 40)
evenly over the period. Finally, undo the logit transformation to obtain the interpolated ILI%. The created
values are shown with a dotted line in Figure 16. This interpolation is somewhat ad hoc, of course, but the
benefits of a larger sample are likely to outweigh the error that we make.

The data sample contains two years with 53 weeks (2003 and 2008), with week 53 starting on Sunday
28 December. Weeks 53 are removed from the sample by assigning 4/7th to week 52 and 3/7th to week
one. This is the final data adjustment before modelling.
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